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Abstract: Value at Risk (VaR) plays a central role in risk management.
There are several approaches for the estimation of VaR, such as histori-
cal simulation, the variance-covariance (also known as analytical), and the
Monte Carlo approaches. Whereas the first approach does not assume any
distribution, the last two approaches demand the joint distribution to be
known, which in the analytical approach is frequently the normal distri-
bution. The copula theory is a fundamental tool in modeling multivariate
distributions. It allows the definition of the joint distribution through the
marginal distributions and the dependence between the variables. Recently
the copula theory has been extended to the conditional case, allowing the use
of copulae to model dynamical structures. Time variation in the first and
second conditional moments is widely discussed in the literature, so allow-
ing the time variation in the conditional dependence seems to be natural.
This work presents some concepts and properties of copula functions and
an application of the copula theory in the estimation of VaR of a portfolio
composed by Nasdaq and S&P500 stock indices.
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1. Introduction

Value at Risk (VaR) is probably the most popular risk measure, having a cen-
tral role in risk management. Although VaR is a simple measure, it is not easily
estimated. There are several approaches for the estimation of VaR, such as the
variance-covariance (also known as analytical), the historical simulation and the
Monte Carlo approaches. The analytical approach has been largely used after
the publishing of the Riskmetrics methodology. This approach adopts the as-
sumption of multivariate normality of the joint distribution of the assets returns.
In this case, the covariance matrix is a natural measure of dependence between
the assets and the variance is a good measure of risk. In finance the normality
is rarely an adequate assumption. For instance, Longin and Solnick (2001) and
Ang and Chen (2002) found evidence that asset returns are more highly corre-
lated during volatile markets and during market downturns. The deviation from
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normality could lead to an inadequate VaR estimate. In this case, the portfo-
lio could be either riskier than desired or the financial institution unnecessarily
conservative.

The theory of copulae is a very powerful tool for modeling joint distribu-
tions because it does not require the assumption of joint normality and allow us
to decompose any n-dimensional joint distribution into its n marginal distribu-
tions and a copula function. Conversely, a copula produces a multivariate joint
distribution combining the marginal distributions and the dependence between
the variables. Copulae have been broadly used in the statistical literature. The
books of Joe (1997) and Nelsen (1999) presented a good introduction to the cop-
ula theory. Although copulae have been only recently used in the financial area,
there are already several applications in this area. The papers of Bouyé et al.
(2000), Embrechts, McNeil and Straumann (2002) and Embrechts, Lindskog and
McNeil (2003) provided general examples of applications of copulae in finance.
There also several particular applications. For instance, Cherubini and Luciano
(2001) estimated the VaR using the Archimedean copula family and the histori-
cal empirical distribution in the estimation of marginal distributions; Rockinger
and Jondeau (2001) used the Plackett copula with GARCH process with innova-
tions modeled by the Student-t asymmetrical generalized distribution of Hansen
(1994) and proposed a new measure of conditional dependence; Georges (2001)
used the normal copula to model options time of exercise and for derivative pric-
ing; Meneguzzo and Vecchiato (2002) used copulae for modeling the risk of credit
derivatives; and Fortin and Kuzmics (2002) used convex linear combinations of
copulae for estimating the VaR of a portfolio composed by the FSTE and DAX
stock indices; and Embrechts, McNeil and Straumann (2002) and Embrechts, Ho-
ing and Juri (2003) used copulae to model extreme value and risk limits. These
recently published papers show the wide range of copula applications in finance.

The recent extension of the unconditional copula theory to the conditional
case has been used by Patton (2003a) to model time-varying conditional depen-
dence. Time variation in the first and second conditional moments is widely
discussed in the statistical literature, so allowing the temporal variation in the
conditional dependence in time series seems to be natural.

In this paper we discuss the application of conditional copula in estimating
the VaR of a portfolio with two assets. The paper is organized as follow. Section
2 defines copula and presents Sklar’s theorem. The copulae families used in this
work are presented in Section 3 while Section 4 discusses some inference methods
for copulae, like estimation and model selection. Finally, Section 5 applies the
method to a portfolio composed by two assets (the Nasdaq and the S&P500
stock indices). After modeling and estimating the parameters by the Inference
Function for Margins method, we used out-of-sample simulation techniques to
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test the accuracy of the VaR estimates. We compared the results obtained using
traditional approaches to estimate VaR, like the Exponentially Weighted Moving
Averages, the historical simulation, and univariate and bivariate GARCH models.

2. Introduction

According to Nelsen (1999, pg.1), copulae can be seen from two points of
view: “From one point of view, copulas are functions that join or couple mul-
tivariate distribution functions to their one-dimensional marginal distribution
functions. Alternatively, copulas are multivariate distribution functions whose
one-dimensional margins are uniform on the interval (0,1)”.

2.1 Definition

In this section we give the general definition of copulae and a equivalent
definition for the random variable context.

For simplicity purposes, throughout this paper we treat only the bivariate
case, but the extension for higher dimensions is straightforward (see, for instance,
Nelsen (1999) and Patton (2003a)).

Definition 2.1 A 2-dimensional copula function (or briefly a copula) is a
function C, whose domains is [0, 1]2 and whose range is [0, 1] with the following
properties:

1. C(x) = 0 for all x ∈ [0, 1]2 when at least one element of x is 0;

2. C(x1, 1) = C(1, x2) = 1 for all (x1, x2) ∈ [0, 1]2;

3. for all (a1, a2), (b1, b2) ∈ [0, 1]2 with a1 ≤ b1 and a2 ≤ b2 , we have :

VC([a, b]) = C(a2, b2) − C(a1, b2) − C(a2, b1) + C(a1, b1) ≥ 0

Hence any bivariate distribution function whose margins are standard uni-
form distributions is a copula.

Definition 2.2 The copula function C is a copula for the random vector
X = (X1,X2)t, if it is the joint distribution function of the random vector
U = (U1, U2)t where Ui = Fi(Xi), and Fi are the marginal distribution func-
tions of Xi, i = 1, 2.

This imply that:
H(x1, x2) = C(F1(x1), F2(x2)),
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where H is the joint distribution function of (X1,X2). If F1 and F2 are continuous
then the copula C is unique. Thus we can interpret a copula as a function which
links the marginal distributions of a random vector to its joint distribution.

2.2 Sklar theorem

The next theorem is a key result in the theory of copulae :

Theorem 2.1 (Sklar Theorem) Let H be a 2-dimensional joint distribution
function with marginal distributions F1, F2. Then there exists a copula C such
that for all x ∈ �n,

H(x1, x2) = C(F1(x1), F2(x2)). (2.1)

If F1, F2 are continuous, then C is unique; otherwise, C is uniquely determined
on Ran(F1) × Ran(F2). Conversely, if C is a copula and F1, F2 are distribution
functions, then the function H defined by (2.1) is a joint distribution function
with margins F1 and F2.

The proof can be found in Nelsen (1999, p. 18).
It is the converse of the Sklar’s theorem that is most interesting for modeling

multivariate distributions in finance. It implies that we may link any group of
n univariate distributions, of any type (not necessarily from the same family),
with any copula and we will have defined a valid multivariate distribution. The
usefulness of this result stems from the fact that while in economics and statistics
literature we have a large set of flexible parametric univariate distributions avail-
able, the set of parametric multivariate distributions available is much smaller.
According to Patton (2003a), referring to finance data, “Decomposing the multi-
variate distribution into the marginal distributions and the copula allows for the
construction of better models of the individual variables than would be possible
if we constrained ourselves to look only at existing multivariate distributions”.

Patton (2003a) extended and proved the validity of the Sklar’s theorem for
the conditional case. In this extension the conditioning variable(s) W must be
the same for the marginal distributions and the copula.

For the definition of copulae for the general case (n > 2) and for more details,
look at Nelsen (1999), Bouyé et al. (2000) and Patton (2003a).

3. Some Families of Copulae

In this section we present the three families of copulae used in this work :
Student-t, Plackett, and symmetrized of Joe-Clayton copulae.
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3.1 Student-t copula

The bivariate Student-t copula (or briefly t copula) is the function

Ct
R12,ν(u, v) =∫ t−1

ν (u)

−∞

∫ t−1
ν (v)
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1
2π(1 − R2

12)1/2

{
1 +

s2 − 2R12st + t2
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12)

}−(ν+2)/2

dsdt.

where t−1
ν is the inverse of the univariate t distribution with ν degrees of freedom.

If the marginal distributions F1 and F2 are two Student-t distributions with
(same) ν degrees of freedom and C is a Student-t copula with parameters ν and
R12, then the bivariate distribution function H defined by H(x, y) = C(F1(x), F2(y))
is the standardized bivariate t distribution, with µ = 0, linear correlation coef-
ficient R12 and ν degrees of freedom. In this case the t copula is the copula
function which join the marginal t distributions with same degrees of freedom
to the bivariate t distribution. The t Student copula generalizes the bivariate t
distribution because we can adopt any marginal distribution.

3.2 Plackett’s copula

A measure of ”association” or ”dependence” in 2×2 contingency tables is the
cross product ratio, or odds ratio, which we will denote by θ. For convenience,
we have labelled the categories for each variable as ‘low’ and ‘high’.

Table 1: A 2 × 2 contingency table.

Column variable
Low High

Row Low a b a + b
Variable High c d c + d

a + c b + d n

If the observed count in the four categories are a, b, c, d, as shown in Table 1,
then the cross product ratio is the positive real number θ given by θ = (ad)/(bc).
The value θ = 1 corresponds to independence, which implies that each ’observed’
entry (for example a) is equal to it ’expected value’ under independence (here
(a + b)(a + c)/n), where n = a + b + c + d. When θ > 1, the observations are
more concentrated in the ’low-low’ and ’high-high’ cells; and when 0 < θ < 1,
the observations are more concentrated in the ‘low-high’ and ‘high-low’ cells.

Plackett (1965) associated continuous marginal distributions to this table. Let
X and Y be continuous random variables with joint distribution H, and margins
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F1 and F2, respectively. Let (x, y) be any pair of real numbers and let the ‘low’
and ‘high’ categories for the column variable correspond to the events “X ≤ x”
and “X > x” respectively, for the variable X, “Y ≤ y” and “Y > y” respectively
for the variable Y. Then replacing the numbers a, b, c, d by their probabilities of
occurrence, we have

θ =
H(x, y)[1 − F1(x) − F2(y) + H(x, y)]
[F1(x) − H(x, y)][F2(x) − H(x, y)]

.

For most joint distributions, θ will be a function of the point (x, y). But there
are joint continuous distributions which do not depend on (x, y). Let u = F1(x)
and v = F2(y). Using Sklar’s Theorem 2.1, we have

θ =
C(u, v)[1 − u − v + C(u, v)]
[u − C(u, v)][v − C(u, v)]

,

where C is the copula of X and Y .
Solving for C, we have

Cθ(u, v) =
1

2(θ − 1)
[1 + (θ − 1)(u + v)−

(
[1 + (θ − 1)(u + v)]2 − 4uvθ(θ − 1)

)1/2
]

for θ �= 1, and Cθ(u, v) = uv for θ = 1, which is defined for θ > 0, and satisfies
the copula conditions. Then H(x, y) = Cθ(F (x), G(y)) is the joint distribution
function of X and Y and the function Cθ is called Plackett’s copula.

Rockinger and Jondeau (2001) used the Plackett’s copula and a dependence
measure to check whether the linear dependence varies with the time. They
worked with returns of European stock market series, the S&P500 index and the
Nikkei index. One disadvantage of the Plackett’s copula is that it cannot be
easily extended for dimensions larger than two.

3.3 Symmetrized Joe-Clayton copula

Patton (2003a) used a modified form of Joe-Clayton copula to model the
returns of Yen-US Dollar and Mark - US dollar exchange rates. Although this
copula does not have the restriction of symmetrical dependence it includes the
symmetric case as a particular case. The Joe-Clayton copula is given by:

CJC(u, v|τU , τL) = 1 −
({

[1 − (1 − u)κ]−γ + [1 − (1 − v)κ]−γ − 1
}−1/γ

)1/κ
,
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where

κ = 1/log2(2 − τU )
γ = −1/log2(τL)

τU ∈ (0, 1), τL ∈ (0, 1).

This copula has two parameters, τU and τL, which are the coefficients of upper
and low tail dependence, respectively (see Patton (2003a)). The Joe-Clayton
copula still has a slight asymmetry when τU = τL, which is not convenient. In
order to overcome this problem we have a modified form of the copula, known as
symmetrized Joe-Clayton copula (SJC) which is given by:

CSJC(u, v|τU , τL) =
0.5 CJC(u, v|τU , τL) + 0.5 CJC(1 − u, 1 − v|τL, τU ) + u + v − 1,

which is symmetric when τU = τL.

4. Statistical Inference of Copulae

Let (X1,X2), be a vector of two random variables with joint distribution
function H and marginal distribution functions F1 and F2 respectively. Each
marginal distribution function depends only on the parameter ϑi. Denote the
unknown vector of parameters by ϑ = (ϑ1, ϑ2, θ), where θ is the vector of pa-
rameters of the n-dimensional copula {Cθ, θ ∈ Θ} and Cθ is completely known
except for the parameter θ. Suppose that {(x1, t, x2, t)}T

t=1 is a sample of size T.
Hence we have by Sklar’s theorem:

H(x1, x2) = C(F1(x1;ϑ1), F2(x2;ϑ2); θ). (4.1)

Thus the joint distribution function H is completely specified by the parameter
vector ϑ = (ϑ1, ϑ2, θ).

Differentiating (4.1) with respect to all variables, we obtain the density func-
tion h

h(x1, x2) = c(F1(x1), F2(x2))f1(x1)f2(x2), (4.2)

where fi is the density function associated to the marginal distribution Fi and c
is the copula density, given by

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2
.
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4.1 Estimation

The log-likelihood function is given by:

l(ϑ) =
T∑

t=1

ln c(F1(x1, t;ϑ1), F2(x2, t;ϑ2); θ) +
T∑

t=1

2∑
i=1

ln fi(xi, t;ϑi). (4.3)

Thus, the maximum likelihood estimate ϑ̂ maximizes (4.3), i.e., it is given by:

ϑ̂ = arg max
ϑ

l (ϑ).

This method can be computationally cumbersome when the dimensional is
large because the marginal and copula parameters must be estimated jointly.
For this reason it is not usually used in practice. One alternative is given by
the Inference Function for Margins (IFM) Method, where the parameters are
estimated in two stages and it is computationally simpler than the maximum
likelihood method. In the first stage we estimate the parameters of the marginal
distributions Fi, and in the second stage we estimate the copula parameters
conditioned to the previous marginal distributions estimates. In each stage we
use the maximum likelihood method. In an unpublished Ph.D. dissertation Xu
(1996) used simulation to compare the exact maximum likelihood and the IFM
estimators and found that the ratio of the mean square errors are approximately
equal to one.

Under regularity condition Patton (2003b) showed that the IFM estimator is
consistent and asymptotically normal.

4.2 Conditional case

The conditional likelihood is given by the conditional version of the Sklar’s
Theorem. Let Fi be the conditional distribution of Xi|W for i = 1, 2 and let
H be the joint (absolutely continuous) conditional distribution of X|W, where
X = (X1,X2) has conditional copula function C. Then, we have :

H(x1, x2|w) = C(F1(x1|w), F2(x2|w)|w).

Thus an expression equivalent to (4.2) is given by:

c(F1(x1|w), F2(x2|w)|w)f1(x1|w)f2(x2|w),

where fi(xi|w) is the conditional density of Xi|W = w and

c(u1, u2|w) =
∂2C(u1, u2|w)

∂u1∂u2
.
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The log-likelihood expression is equivalent to (4.3) :

l(ϑ) =
T∑

t=1

ln c(F1(x1, t;ϑ1|wt), ..., Fn(xn, t;ϑn|wt); θ|wt) +

T∑
t=1

2∑
i=1

ln fi(xi, t;ϑi|wt),

and we can use all the previous methods to estimate the parameters.

4.3 Empirical Copula

The empirical copula Ĉ is defined as:

Ĉ

(
t1
T

,
t2
T

)
=

1
T

T∑
t=1

1[x1, t≤x1(t1),x2, t≤x2(t2)], (4.4)

where 1 is the indicator function, xi, (tj), i = 1, 2, j = 1, 2 are the tj-th order
statistics of the i-th variable and t1, t2 ∈ {1, ..., T}. Therefore the empirical
copula is the proportion of elements from the sample that satisfies x1, t ≤ x1, (t1)

and x2, t ≤ x2, (t2).

4.4 Selection of the copula function

The quadratic distance between two copulae C1 and C2 in a (finite) set of
bivariate points A = {a1,a2, ...,am} is defined as:

d (C1, C2) =

[
m∑

i=1

(C1 (ai) − C2 (ai))
2

]1/2

. (4.5)

Let {Ck}1≤k≤K be the set of copulae under consideration. One criterion is
to select the copula Ck which minimizes the quadratic distance between Ck, the
estimated copula, and the empirical copula Ĉ, defined by (4.4), in the region
of interest. For instance, when selecting a model in order to estimate the VaR,
the region of interest should be the lower tail. We will use this region in the
Subsection 5.5.

Another suggestion is to use a criterion like Akaike’s information criterion
(AIC) (Akaike, 1973) which is defined as

AIC(M) = −2 log-likelihood(θ̂, ϑ̂) + 2 M,
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where M is the number of parameters being estimated and hat denotes the max-
imum likelihood estimates. M and the parameters estimated depend on the se-
lection approach. When we are selecting the copula function, M is the number of
the copula parameters if the models for the marginal distributions are considered
as known. Smith(2003) used this criterion for copula selection.

5. Application

5.1 Value at risk

In 1994 the American bank JP Morgan published a risk control method knows
as Riskmetrics, based mainly on a parameter named Value at Risk.

The Value at Risk is a forecast of a given percentile, usually in the lower tail,
of the distribution of returns on a portfolio over some period ∆t. The VaR of a
portfolio at time t, with confidence level 1 − α, where α ∈ (0, 1) is defined as:

V aRt(α) = inf{s : Fp, t(s) ≥ α},

where Fp, t is the distribution function of the portfolio return Xp, t at time t
(return from t−∆t to t). Equivalently, we have P (Xp, t ≤ V aRt(α)) = α at time
t. This means that we are 100(1 − α)% confident that the loss in the period ∆t

will not be larger than the VaR.
VaR is being used for several needs; risk reporting, risk limits, regulatory

capital, internal capital allocation and performance measurement. An inade-
quate VaR estimation can lead to a underestimation of the risk incurred. On the
other hand, a conservative position due to overestimation of the VaR would, for
instance, not consider certain risk controlled positions.

We are going to work with one-day period VaR. Consider the case of a portfolio
composed by two assets, with returns at t − th day, denoted as X1, t and X2, t

respectively. The portfolio return, denoted as Xp, t is approximately equal to
ω1X1, t + ω2X2, t, where ω1 and ω2 are the portfolio weighs of assets 1 and 2. For
the VaR estimation, we could study the distribution of the univariate portfolio
return series, or the bivariate distribution of the vector (X1, t,X2, t).

In this paper we use copula theory to model the vector (X1, t,X2, t). The
modeling is done in the following sequence :

• An exploratory data analysis is done in Subsection 5.2.

• The general model is presented in Subsection 5.3. The model selection and
estimation is done in two steps :

ARMA-GARCH models are fitted for each return series in Subsection
5.4.
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The bivariate distribution of the ARMA-GARCH models is modeled by
three copulae families in Subsection 5.5. They are fitted for the innovations
estimated in Subsection 5.4.

• The fitted models are used to estimate the VaR. A backtesting is used to
test the VaR estimates. This is done in Subsection 5.6.

• The best copula model is compared to traditional VaR estimation methods
in Subsection 5.7.

5.2 Data description

The theory presented is applied to a portfolio composed by Nasdaq and
S&P500 stock indices. The database contains 2972 daily closing prices, from
January 2nd 1992 to October 01st 2003. We denote the log-returns of Nasdaq
as variable 1 and the log-returns of S&P500 as variable 2. Figure 1 presents the
plots of both series and Table 2 contains descriptive statistics.
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Figure 1: Daily returns and absolute returns of Nasdaq and S&P500 stock
indices.
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Table 2: Descriptive statistics of daily log-returns of Nasdaq and S&P500 stock
indices.

Statistics Nasdaq S&P500

Mean 0.00038 0.00030
Mean (annualized) 10.141% 7.857%
Standard Deviation 0.01694 0.01076
Minimum -0.10168 -0.07113
Median 0.00122 0.00028
Maximum 0.13255 0.05574
Excess of Kurtosis 4.91481 3.78088
Asymmetry 0.01490 -0.10267

In Figure 1 we can see the evidence of the stylized fact known as volatility
clustering, in which large absolute returns tend to follow large absolute returns
and the same for small returns. Table 2 shows that the annualized means of
both series are positive. Both return series distributions are nearly symmetric
and have large kurtosis, with the Nasdaq presenting the larger one. We do not
present the autocorrelation functions of the series, but for the Nasdaq returns,
only the autocorrelations of lag 12 and 13 are significant at the 5% level (t statistic
equals to 3.68 and 4.48 respectively). There is no significant correlation for the
S&P500 returns at the 5% level.

5.3 The model

In specifying the bivariate model we must specify the two models for the
marginal variables and the model for the conditional copula. The models for the
univariate variables must take into account the characteristics of the variables.
Return series have been successfully modeled by ARMA-GARCH models by many
authors and will be used here. For instance, for an AR(1)xGARCH(1,1) the
models for the margins are given by:

Xi, t = µi + φi Xi, t−1 + εi, t ;
εi, t = σi, t ηi, t ; (5.1)
σ2

i, t = αi + βi ε2
i, t−1 + γi σ2

i, t−1,

where i = 1, 2, {η1, t} and {η2, t} are white noise processes with zero mean and
unit variance, αi, βi, γi follow Nelson and Cao (1992) restrictions; and βi +γi < 1,
for i = 1, 2. The conditional distribution of the standardized innovations

ηi, t =
εi, t

σi, t
|Fi, t−1, i = 1, 2
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was modeled by standard normal and standard t distributions. We denoted these
models, respectively by GARCH-N, GARCH-t. The distribution of the innovation
vector ηt = (η1,t, η2,t) is modeled by copula. This approach was applied, for
instance, by Dias and Embrechts (2003) and Patton (2003a). The ARMA ×
GARCH models work as a filter in order to have innovation processes, which are
serially independent.

In order to apply the copula models we need to specify the conditional marginal
distributions. Additionally to the normal and t distributions we are also going
to use the empirical distribution of the residuals (estimates of the standardized
innovations). According to the IFM method the selected copula functions will
be fitted to these residuals series. The estimation of the models is done in the
following subsections.

5.4 Modeling the marginal distributions

We fitted two AR(1)-GARCH(1,1) models for the series X1 and X2 as initial
models with normal and t distributions. Table 3 presents maximum likelihood
estimates obtained without constraints, using the MATLAB maximization func-
tion. We considered other ARMA models, such as AR(2) and ARMA(1,1) for
the level of returns, but the additional parameters estimated were not significant
(at the 5% level) for both series.

Table 3: Parameter estimates of GARCH models and standard errors.

Parameter GARCH-N GARCH-t

µ1 8.25x10−4 (1.85x10−4) 9.43x10−4 (1.79x10−4)
φ1 0.0846 (0.0199) 0.0884 (0.0188)
α1 1.44x10−6 (4.06x10−7) 6.13x10−7 (2.69x10−7)
β1 0.1022 (0.0145) 0.0652 (0.0111)
γ1 0.8958 (0.0140) 0.9180 (0.0134)
ν1 9.6859 (0.0773)
AIC1 -1.738x104 -1.745x104

µ2 5.18−4 (1.42x10−4) 5.66x10−4 (1.35x10−4)
φ2 0.0156 (0.0194) -0.0021 (0.0188)
α2 5.76x10−6 (1.87x10−7) 2.55x10−7 (1.20x10−7)
β2 0.0701 (0.0097) 0.0430 (0.0069)
γ2 0.9273 (0.0097) 0.9397 (0.0093)
ν2 7.2459 (0.1516)
AIC2 -1.939x104 -1.950x104

Figure 2 presents the normal and t probability plots of the transformed series:
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ut = F1, t(x1,t|Ft−1) and vt = F2, t(x2,t|Ft−1), where F1, t and F2, t are marginal
distributions conditioned to Ft−1, the information available up to time t − 1.
If the models were correctly specified then both series will be standard uniform
series. The fit seems quite good.
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Figure 2: Empirical distribution of transformed series ut and vt.

The Ljung-Box test applied to the residuals of the GARCH-N and GARCH-t
models does not reject the null hypothesis of null autocorrelations from lag 1 to
10 for the residuals for both series at the 5% significance level. The p-values are
0.320 and 0.087 for the GARCH-N and GARCH-t models respectively, for the
first series, and 0.185 and 0.083 for the second series. The Ljung-box test also
does not reject the null hypothesis from lag 1 to 10 for the square of the residuals
series at the 5% significance level. The p-values are 0.959 and 0.759 for the square
of residuals of the first series and 0.968 and 0.636 for the second. Therefore, we
consider that the models are adequate.
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5.5 Modeling the dependence between series

Figure 3 shows the plots of the bivariate residual series for both GARCH-N
and GARCH-t models. We can see that there is a positive dependence between
the two series.
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Figure 3: Scatterplot of the Nasdaq and S&P500 dollar standard-
ized innovations (GARCH-N and GARCH-t models).

We are going to use three copula functions earlier presented in this paper
and which have been applied by other authors: SJC, t and Plackett copulae with
normal, t and empirical marginal distributions. The normal and t distributions
are used with the residuals of the adjustment of the GARCH-N and GARCH-t,
respectively. The empirical marginal distribution was used with the residuals of
the adjustment of the GARCH-N model. We could consider it as model GARCH-
E estimated by quasi-maximum likelihood method. Table 4 presents the IFM
estimates of the copula function parameters.

The quality of the adjustment can be assessed by the quadratic distance
defined in (4.5) between the estimated and the empirical copulae. Since our main
interest relies on the extreme losses it is interesting to measure the distance only in
the lower tail. Table 5 presents the quadratic distance in (4.5) only in the square
region 0 ≤ u, v ≤ γ for γ = 0.05, 0.1 and 0.2. In this table “model Plackett +
GARCH-E”, for instance, means model GARCH for the margins estimated with
normal innovations and Plackett copula with empirical distribution fitted to the
residuals series. The analysis of the results in Table 5 shows that the t copula
provided the best adjustment. The results obtained using the SJC copula
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Table 4: Parameter estimates and standard errors for SJC, Plackett and
Student-t copulae

Copula Parameter GARCH-N GARCH-t GARCH-E

SJC τL 0.6706 0.6887 0.7124
(0.0092) (0.0080) (0.0072)

τU 0.5937 0.5858 0.5286
(0.0151) (0.0152) (0.0188)

(AIC) −3.9918x104 −4.0208x104

Plackett θ 21.6216 20.0555 19.9550
(0.9248) (0.8699) (0.8630)

(AIC) −3.9939x104 −4.0047x104

Student-t ν 9.5305 6.9129 7.5432
(0.6648) (0.5210) (0.5865)

R12 0.8248 0.8174 0.8175
(0.0052) (0.0063) (0.0056)

(AIC) −4.0117x104 −4.0291x104

Table 5: Quadratic distance between the estimated and empirical copulae in
the left tail (square [0, γ]2).

Model γ = 0.20 γ = 0.10 γ = 0.05

SJC + GARCH-N 4.8896 0.7971 0.4328
SJC + GARCH-t 3.9492 0.8381 0.5181
SJC + GARCH-E 2.8348 1.0524 0.6273
Plackett + GARCH-N 6.7868 2.1017 0.5102
Plackett + GARCH-t 7.4747 2.2761 0.5530
Plackett + GARCH-E 7.5159 2.2880 0.5559
t-Student + GARCH-N 3.6668 0.6846 0.2483
t-Student + GARCH-t 3.8616 0.7011 0.2553
t-Student + GARCH-E 3.8996 0.7102 0.2467

were also reasonable (specially with GARCH-E margins for the [0; 0.20]2 region),
except for the [0; 0.05]2 region.

5.6 Estimating the value at risk

We arbitrarily consider a portfolio with equal weights for both indices, but
this is not a constraint and they can vary freely. Hence, considering that the
returns are small, we have approximately Xp, t ≈ (1/2)X1, t + (1/2)X2, t.
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In order to asses the accuracy of the VaR estimates we backtested the method
at 95%, 99% and 99.5 % confidence level by the following procedure. Since at
time t you only know the data up to this point the VaR must be evaluated with
the model (AR(1) - GARCH(1,1) + copula) estimated using only information up
to this time. After estimating the total model we can simulate from the estimated
copula to have an estimate of the joint distribution of the vector of innovations
ηt+1. Using model (5.1) we can have an estimate of the portfolio distribution and
estimate the VaR. Since estimating the model and simulating from the copula
could be computationally too cumbersome we estimated the model only once at
every 50 observations because we did not expect to have large difference in the
estimated models when modifying a fraction of the observations.

We initially estimated the parameters model using data from t = 1 to t = 750.
Then we simulated 5000 values of the innovations for (η1,751, η2,751), evaluated
the VaR value for α = 0.005, 0.01 and 0.05 and tested whether xp, 751 was bellow
these estimated VaR values. For the next 49 observations we used this same
estimated model. This means that we used the same copula simulation for each
50 observations, but at each new observation we up-to-dated the VaR estimates
because the conditional level and variance estimates was up-to-dated according
to model (5.1). At observations t = 800, 850, · · · , 2950 we re-estimated the model
and repeated the whole process. We always used a window of 750 observations.
Since we have 2971 observations we had a total of 2220 tests for VaR at each
level. The results are presented in Table 6 and Figure 4.

Table 6: Proportion of observations (number of observations in brackets), for
t = 751 to 2971, where the portfolio loss exceeded the estimated VaR for
α = 0.005, 0.01 and 0.05.

Copula GARCH-N GARCH-t GARCH-E

α = 0.05 (111)
SJC 0.0675 (150) 0.0698 (155) 0.0558 (124)
Plackett 0.0684 (152) 0.0707 (157) 0.0576 (128)
t-Student 0.0716 (159) 0.0761 (169) 0.0626 (139)

α = 0.01 (22)
SJC 0.0185 (31) 0.0149 (33) 0.0104 (23)
Plackett 0.0225 (50) 0.0176 (39) 0.0131 (29)
t-Student 0.0243 (54) 0.0189 (42) 0.0126 (28)

α = 0.005 (11)
SJC 0.0126 (28) 0.0090 (20) 0.0041 (9)
Plackett 0.0162 (36) 0.0122 (27) 0.0077 (17)
t-Student 0.0171 (38) 0.0126 (28) 0.0077 (17)
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Figure 4: Out of sample one step ahead estimated 5% portfolio VaR (SJC cop-
ula and GARCH-E margins) and observed returns. In the x-axis, observations
where the observed portfolio loss was larger than the estimated VaR.

The exercise results showed that the GARCH-E model provided the best
performance for VaR estimation. The model with SJC copula and GARCH-E
margins was the best for all α levels considered. The t copula was the model with
smallest distance to the empirical copula (see Table 5) for the regions [0, 0.05]2

and [0, 0.10]2 , but the SJC copula provided the best performance in the backtest.

5.7 Comparison of the value at risk estimates

We estimated the VaR using different approaches for benchmark purposes. We
worked directly with the univariate portfolio return series, estimating the VaR
using univariate GARCH model, historical simulation and Exponential Weighted
Moving Average (EWMA) Methods. We also used Bivariate GARCH (BEKK
and DCC) models and bivariate EWMA Method. We are going to present these
methods briefly in the following.

We fitted GARCH(1,1) model directly to the portfolio returns series Xp, t =
(1/2)X1, t + (1/2)X2, t. The GARCH(1,1) model is given by:

Xp, t = µ + σtεt ;

σ2
t = α + βε2

t−1 + γσ2
t−1 ,
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where {εt} is a white noise process with zero mean and unit variance and α, β and
γ follow the same restrictions given in model (5.1). We considered the Normal
and t distributions for the innovations.

The EWMA method is generally used in the Riskmetrics methodology. Let
σ2

p, t be the variance of the portfolio return in time t. The estimated variance,
using data up to time t − 1, is given by :

σ2
p, t/t−1 = (1 − λ)x2

p, t−1 + λσ2
p, t−1/t−2 ,

where σ2
p,(t+1)/t is the smoothed variance considering data up to time t .Consid-

ering the normal distribution, we have xp, t ∼ N (0, σ2
p, t). The parameter λ is

re-estimated on each day t, minimizing the quantity

t−1∑
i=50

(σ2
p,(i+1)/i − x2

p,i+1)
2.

We can also use the EWMA method in the bivariate case. In this case the
estimated variances and covariance are given by :

σ2
1, t/t−1 = (1 − λ1)x2

1, t−1 + λ1σ
2
1, t−1/t−2 ;

σ2
2, t/t−1 = (1 − λ2)x2

2, t−1 + λ2σ
2
2, t−1/t−2 ;

σ12, t/t−1 = (1 − λ12)x1, t−1 x2, t−1 + λ12σ12, t−1/t−2 ,

where the optimal parameters λ1, λ2 and λ12 are obtained at every time t mini-
mizing the quantities

t−1∑
i=50

(σ2
1, (i+1)/i − x2

1, i+1)
2,

t−1∑
i=50

(σ2
2, (i+1)/i − x2

2, i+1)
2, and

t−1∑
i=50

(σ12, (i+1)/i − x2
1, i+1 x2

2, i+1)
2

respectively. σ2
1, t/t−1, σ2

2, t/t−1 and σ12, t/t−1 are estimates of the bivariate covari-
ance matrix and interpreted similarly to the univariate case.

We also considered a exponential smoothing for the returns mean, but the
results obtained were very close, so we maintained the model with zero means.

We also used the historical simulation approach. For this approach, consider
some day t0. The estimated VaR for the day t0 + 1 with confidence level 1 − α
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is given by the αt0-th order statistics of the sample of portfolio returns for t =
1, ..., t0.

The first class of bivariate GARCH models used is the BEKK model (Engle
and Kroner, 1995). Let

xt =
(

x1, t

x2, t

)
, εt =

(
ε1, t

ε2, t

)
, µ =

(
µ1

µ2

)
,

A =
(

a11 a12

a21 a22

)
, B =

(
b11 b12

b21 b22

)
, C =

(
c11 c12

0 c22

)
and let

Σt =
(

σ2
1, t σ12, t

σ12, t σ2
2, t

)
= Cov [εt|�t−1] .

The BEKK model is given by :{
xt = µ + εt ;
Σt = C ′C + A′εt−1ε

′
t−1A + B′Σt−1B .

We assumed that the innovations vector εt has conditionally a normal distribution
N (0,Σt). The program used for the estimation was the SAS 8.2, proc VARMAX.

The second class of bivariate GARCH models used is the DCC one, proposed
by Engle (2002). Let xi be the returns with mean equals zero, for i=1,...n. The
conditional correlation and variances are defined by :

σi, j, t = E [xi, t xj, t|�t−1] /
√

E
[
x2

i, t|�t−1

]
E

[
x2

j, t|�t−1

]
.

Let σ2
i, t = E

[
x2

i, t|�t−1

]
and ηi, t = xi, t/σi, t. So the correlation can be written as

σi, j, t = E [ηi, t ηj, t|�t−1]. Engle (2002) suggests estimating the GARCH processes

qi, j, t = σ̄i, j + α(ηi, t−1 ηj, t−1 − σ̄i, j) + β(qi, j, t−1 − σ̄i, j)

for i, j = 1, ..., n and obtaining σi, j, t = qi, j, t/
√

qi, i, t qj, j, t. We can interpret
σ̄i, j as the unconditional correlation between the innovations of the univariate
GARCH models ηi, t ηj, t. Therefore the correlations and variances are modeled
as GARCH processes with common parameters α and β, and with different un-
conditional expected values σ̄i, j.

We began the VaR estimation using data from t = 1 to t = 750. In the
case of the bivariate and univariate GARCH models the model parameters were
re-estimated after each 50 returns, like before for copulae. For the EWMA and
Historical Simulation methods, the estimates were updated day by day from
t = 750 on.

Table 7 compares the benchmark models and the best model with copula
(SJC copula with GARCH-E margins).
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Table 7: Proportion of observations (number of observations in brackets), for
t = 751 to 2971, where the portfolio loss exceeded the estimated VaR for
α = 0.005, 0.01 and 0.05

Model α = 0.05 α = 0.01 α = 0.005

SJC Copula + GARCH-E 0.0558 (124) 0.0104 (23) 0.0041 (9)
Bivariate GARCH (BEKK) 0.0819 (182) 0.0338 (75) 0.0248 (55)
Bivariate GARCH (DCC) 0.0432 (96) 0.0140 (31) 0.0113 (25)
EWMA (Bivariate) 0.0387 (86) 0.0144 (32) 0.0104 (23)
GARCH-N (Portfolio) 0.0666 (148) 0.0207 (46) 0.0144 (32)
GARCH-t (Portfolio) 0.0693 (154) 0.0131 (29) 0.0104 (23)
EWMA (Portfolio) 0.0527 (117) 0.0135 (30) 0.0099 (22)
Historical Simulation (Portfolio) 0.1220 (271) 0.0293 (65) 0.0144 (32)

We can see that for α = 0.01 or α = 0.005 the copula model provided a far
better result in the VaR estimation. For α = 0.05 the copula model was the
second best model, but close to the best model.

5.8 Concluding remarks

This work showed how conditional copula theory can be a very powerful tool in
estimating the VaR. We used different copulae and marginal distributions for the
GARCH innovations. We compared the results obtained with traditional methods
of VaR estimation. The SJC copula which allows for different dependence in
the tails produced the best result and produced reliable VaR limits. Further
researches must be done in order to extend this type of application to higher
dimensions.
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