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Abstract: A spatio-temporal statistical model for Chronic Wasting Dis-
ease is presented. The model has underpinnings from traditional epidemic
models with differential equations and uses a Bayesian hierarchy to directly
incorporate existing prevalence data. Spatial dynamics are modeled explic-
itly through a system of difference equations rather than through covariance.
The posterior distribution gives evidence of a long term stable level of dis-
ease prevalence, and approximates the probability of the movement of the
disease from one area to another. Predictions for the future of Chronic Wast-
ing Disease in Colorado are given. The model is used to formulate efficient
sampling schemes for future data collection.
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1. Introduction

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy
(TSE) that occurs in wild cervid populations in North America. It has been found
in mule deer (Cervus odocoileus hemionus), white-tail deer (Cervus odocoileus
virginianus) and elk (Cervus elaphus nelsoni) see Miller et al., 2000, Gross and
Miller, 2001. CWD is related to other TSE’s found in domestic animals, such as
scrapie in sheep and bovine spongiform encephalopathy, commonly called mad
cow disease (Miller et al., 2000). It is also related to TSE’s found in humans, such
as kuru, classic Creutzfelt-Jacob disease, and variant Creutzfelt-Jacob disease.
The agent that causes chronic wasting disease is related to a prion that affects
nervous tissue, yet the method of transmission is currently unknown (Colorado
2003, Miller et al., 2000, Gross and Miller, 2001, Hobbs et al., 2002).

The course of infection in mule deer appears to include both latent and in-
fectious periods, with a total span of between 18 and 36 months. CWD causes
damage to portions of the brain in affected animals. Animals with CWD show
a progressive loss of body condition, behavioral changes, and eventually death
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Colorado, 2003, Gross and Miller, 2001). Once clinical signs appear, few deer
survive more than 12 months (Gross and Miller, 2001).

Thus far, chronic wasting disease has been far more common in deer than in
elk. It has been estimated that in infected regions, estimates are in the 5-6%
range for mule deer, compared to only about 1% in elk (Gross anf Miller, 2001,
Colorado, 2003). While both mule deer and white-tailed deer can contract the
disease, in the Rocky Mountain region the epidemic seems to be focused in those
areas where mule deer are common and relatively few white-tailed deer are found.
Consequently, research on the dynamics of the disease in the Rocky Mountain
area (Gross and Miller, 2001, Hobbs et al. 2002, Hobbs et al., 2003) has focused
on mule deer.

Because of the economic impact that hunting and related business has in some
states, Chronic Wasting Disease is recognized throughout the United States as a
potentially disastrous problem. Currently, every state except Hawaii has imple-
mented a CWD surveillance program. An article in the October 24, 2003, edition
of the Denver Post reported that hunting added $599 million to the economy of
the state of Colorado in 2002. The same article estimated the potential economic
impact of CWD nationwide to be up to $100 billion annually.

Chronic Wasting Disease in the Rocky Mountain region is concentrated in
Northeast Colorado and Southeastern Wyoming. The disease has slowly been
making its way across Colorado and has recently crossed the continental divide
(Colorado, 2003). Incidents of the disease in Central and Western Colorado have
been isolated thus far. Despite this spread and the potential biological, economic,
and human health impacts, a statistical model with spatial components has yet
to be presented.

There are several standard differential equations commonly used to model
epidemics. One such is the Lotka-Volterra predator-prey model adapted to dis-
eases as given in Renshaw (1991) and Hoppensteadt (1975). Previous efforts for
modeling CWD have used variants of these (Gross and Miller, 2001; Hobbs et
al., 2003). Models based on differential equations typically focus on individual
interactions between deer, impacts of changes in the birth and death rates (Gross
and Miller, 2001) and modeling the spread as a diffusion process (Hobbs et al.,
2002). These authors use stochastic forward integration as the primary tool for
understanding and exploring spatio-temporal dynamics. While these models h422
ave provided many insights into the behavior of the disease, they homogenize the
affected region into a single unit and do not have a direct link between data and
mathematical model.

Waller et al. (1997), Cressie and Mugglin (2000), and Mugglin et al. (2000)
have successfully used a correlated Poisson model for the spatial spread of highly
contagious human diseases such as influenza. These models capture the epidemic
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dynamics through use of a control term in the model that is turned “on” and
“off”. We use a model that is different from those presented in Waller et al.
(1997) and Mugglin et al. (2000), because of fundamental differences in the data.
Typically, large quantities of reliable data are available for building models of
human diseases such as influenza. The models of Waller et al. (1997), Cressie
and Mugglin (2000), and Mugglin et al. (2000) exploit large sample sizes to
use Poisson approximations for Binomial distributions. On the other hand, it is
extremely difficult and expensive to obtain disease prevalence data on a wildlife
population. Thus, models for CWD need be to appropriate for small samples.

Figure 1: Deer Analysis Units as defined by the Colorado Division of Wildlife.
For reference, the Denver metro area is approximately centered where DAUs
17, 27 and 49 meet. The digits not in boxes represent smaller spatial units
called game management units.

We propose a Bayesian hierarchical model for chronic wasting disease that
directly integrates mathematical models related to those of Gross and Miller
(2001), Hobbs et al. (2002) with a model for observations taken on CWD preva-
lence. Critical to the model is a difference equation approximation to traditional
differential equation models of prevalence to model dynamics over time. We
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also include a mechanism that allows for spatial mixing of the disease between
regions. We incorporate the available data through a Bayesian hierarchical frame-
work, thus linking the data and mathematical model. This hierarchical approach
integrates data and epidemic theory into a single model, is capable under the
constraint of small data sets, and provides a mechanism for prediction and the
study of data collection designs.

2. Introduction

Data for CWD is economically and ecologically expensive to obtain as the
testing procedure, until recently, required sacrificing the animal, (Colorado, 2003,
Hobbs et al., 2003). Prevalence data consists of the numbers of deer that are
tested for CWD and the number of those tested that are found to have the
disease (Miller et al., 2000) and Gross and Miller (2001).

Biologists divide the state of Colorado into 55 geographic regions called deer
data analysis units (DAUs). The 55-th DAU was recently created from DAU 54
(north-east Colorado), and data from DAU-55 in this analysis is included with
its mother DAU. The 54 DAUs are shown in Figure 1. The DAUs are defined
from geographical and biological considerations and each is intended to represent
a relatively homogeneous region. Data collected from the 1976-2002 hunting
seasons has confirmed presence of CWD in thirteen DAUs. The data used in this
study are courtesy the Colorado Division of Wildlife (CDOW)1.

From 1976-1995, few deer (65) were tested, and those only from the endemic
area, which consists of DAUs 4, 5, 10, 27, and 44. From 1996-2001, intense
testing was done by the Colorado Division of Wildlife in this endemic area. The
data consists of the number of deer tested in DAU i and year t (Nit), and the
number of those that test positive for CWD(Mit). This includes data from both
harvest (i.e., collected from hunters) and non-harvest sources. A majority of the
data is harvest based. Harvest data may not always provide a glimpse of the
population as a whole, since in some DAUs hunters are restricted to taking male
animals only, while in others they may take animals of either sex, depending
on the State’s management plan. (Conner et al. 2000) notes differences in the
harvest versus non-harvest based samples.

The 2002 and 2003 hunting seasons were different in that the CDOW did “no
cost to hunter” testing on harvested animals from the endemic area, and offered
testing at a minimal cost to hunters from all other areas Colorado (2003). In
these years, CDOW required all deer and elk from the endemic area (northeastern
Colorado) to be tested, and relied on voluntary submissions outside the area.

The difference in sampling mechanism is for areas where the disease is believed

1See http://www-math.cudenver.edu/∼cjohns/CWDdata/
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to have “high” prevalence compared with areas where the disease is not yet known
to have a significant presence puts an acute emphasis on the need for a model that
can predict the movement of the disease. Specifically, in areas where prevalence
exists, but at very low rates, it will take a significant amount of time for data
evidence to be sufficient to require mandatory testing in areas that are currently
thought to be disease free. The current sampling scheme that relies on voluntary
submissions improves spatial coverage significantly, but may introduce selection
bias.

3. Spatio-Temporal Model

Our approach is to construct a system of difference equations for prevalence
that have qualitative temporal and spatial behavior appropriate for the current
knowledge of CWD. Through a hierarchical Bayesian construction, we then use
the data to estimate the unknown parameters that govern the difference equa-
tions. One fundamental aspect of our approach is the explicit modeling of spatial
dynamics in the difference equations, rather than modeling the effect through
correlation structure. In essence, we have a nonlinear state-space model with
deterministic updates for the states.

We begin by forming a difference equation model for CWD, specifically re-
quiring that it be flexible enough to allow different prevalences for each DAU. We
take as a starting point differential equations that describe the growth and decay
of populations and diseases Renshaw (1991). Of particular use are versions of
the logistic growth curve. Hoppensteadt (1975) and Renshaw (1991) show that
a differential equation for prevalence of a disease equivalent to the logistic model
can be formed by a simple scaling. The basic model is defined by:

dp

dt
= α�p(1 − p), (3.1)

where p is the prevalence of the disease.
For multiple DAUs we simply replicate equation (3.1) once for each DAU and

collect into a vector. Letting pt denote the vector of prevalences, one for each
DAU, we extend the system to include spatial effects with:

dpt

dt
= α�pt � (1− pt) + Qpt, (3.2)

where � represents the Hadamard (element by element) product and Q is a
matrix such that the values qij ∈ [0, 1] represent the instantaneous net effect that
the prevalence in DAU j has on the prevalence of DAU i.

From historical observations and recent studies of CWD, Miller et al. (2000)
and Gross and Miller (2001), it is known that CWD takes approximately 3 years
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from infection to the death of the animal. For a disease with an incubation
period this long, it is reasonable to suppose that a sustainable level of the disease
is possible. Furthermore, CWD has yet to show signs of elimination even in those
areas where the disease has been present the longest, giving further support to
this assumption. Another reasonable assumption is that if the disease is not
present in a given area, i.e., if pkt = 0, then the proportion of deer that are
infected will stay at zero, unless the disease is carried into the unit from some
other unit, either by migration of infected deer or some other carrying agent.
These two assumptions are evinced by the current understanding of the disease
and provide support, through qualitative behavior, for choice of the logistic model
(3.1) as a starting point.

The differential equation (3.2) is approximated by a first order Euler dis-
cretization of the form: pt+1 = pt + αpt � (δ1−pt) + Wpt. Holding α� constant
in this equation or (3.2) restricts the dynamics of the model by fixing the infec-
tion rate whereas letting α� be a function of p, gives some added flexibility to the
model. Cressie and Mugglin (2000) and Mugglin et al. (2000) exploit this type of
freedom in a model for influenza epidemics and explicitly introduce a parameter
to turn the epidemic “on” and “off”. We follow that lead and set α� = α(δ1−p)
where δ is scalar. With this modification, prevalence is increasing for levels below
δ, and decreasing for levels above δ. If δ = 0, then the disease is killing off the
infectives faster than it is creating new infectives and there will be an eventual
burn out of the disease. For δ = 1, then the disease will eventually infect all the
deer. When 0 < δ < 1, the model has a long-run stable proportion of infectives
at level δ. Thus the difference equations for our model are of the form:

pt+1 = pt + α(δ1 − pt) � pt � (1 − pt) + Wpt. (3.3)

where W is a spatial mixing matrix that represents deer migration. We note here
that migration changes prevalence in that a single infected deer migrating from
one DAU to another changes the makeup of prevalence for both the “from” and
“to” DAUs. Thus the change in prevalence for a given DAU consists of a mixture
of the internal (within DAU) dynamic processes modeled by the logistic equations,
(the first term on the right hand side of (3.3)), and the external contributions from
migration to and from neighboring DAUs, (the Wpt term in (3.3)). Including
the migration matrix W does not imply, nor remove the possibility, that deer are
the transmission method for the disease in the model.

In constructing the spatial mixing matrix, W , we assume that the disease can
only migrate between adjoining DAUs, so that if DAUi and DAUj are neighbors,
and DAUj and DAUk are neighbors, but DAUi and DAUk are not, then in a
single time step (one year for our case) migration can occur between i and j,
and between j and k, but not between i and k. Given what is known about
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the behavior of deer in the wild and the spread of CWD in Colorado, this is a
reasonable assumption.

Table 1: Neighborhood relationships between DAUs. Numbers refer to DAU
number in Figure 1.

Near Secondary Near Secondary
DAU Neighbors Neighbors DAU Neighbors Neighbors

1 2,6 7 28 33,45,46,47 48
2 1,3,4 8,9 29 24,52 –
3 2,4,9 8,10 30 35,36,52 25
4 2,3,5,10 9,44 31 32,35,36 37
5 4,44,54 – 32 31,34,45 33
6 1,7,11 – 33 28,45 32
7 6,8,11,41,42,43 1 34 16,32,37,45 15,26,48
8 7,9,14,43 2,3,15,16,53 35 30,31,36 37
9 3,8,10,17,27 2,4,16,38 36 25,26,30,31,35,37 –
10 4,9,27,44 3 37 26,34,36 15,31,35
11 6,7,18,41 12 38 16,17 9,50
12 13,41,51 11,18,19,42,43 39 20,21,40 25,51
13 12,15,22,51 42,43 40 19,25,39 24,51
14 8,43,53 – 41 7,11,12 42
15 13,16,22 8,26,34,37,53 42 7,43 12,13,41
16 15,34,38,48,50 8,9,45 43 7,8,14,42 12,13,53
17 9,38,44,49,50 48 44 5,10,17,54 4,27
18 11,19 12,23 45 28,32,33,34,48 16,46
19 18,23,24,40 12,51 46 28,47,48,49,54 45
20 21,39,51 22 47 28,46,54 –
21 20,22,25,39 – 48 16,45,46,49,50 17,28,34
22 13,15,21,25,26 20 49 17,27,46,48,54 50
23 19 18,24 50 16,17,48 38,49
24 19,29,52 23,40 51 12,13,20 19,39,40
25 21,22,26,36,40 30,39,52 52 24,29,30 25
26 22,25,36,37 15,34 53 14 8,15,43
27 9,10,49 44 54 5,44,46,47,49 –

For parsimony, we fix Wij = γ if DAUi and DAUj are neighbors with a
“significant” proportion of boundary that touch. If DAUi and DAUj have less
of boundary that touch, or are almost touching, then Wij = ω < γ. For DAUs
that are separated, Wij = 0. The diagonal values of W are chosen to make the
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row sums equal to 1. Thus, the Wij can be loosely interpreted as the average
proportion of deer that migrate from DAUi to DAUj each year. Table 1 shows
the ad hoc relationships between the DAUs that we used.

The observation at DAUi at year t, denoted by Yit, is modeled as one of two
binomial distributions

Yit ∼ B(Nit, pit) for Nit > C
∼ B(Nit, π) for Nit ≤ C. (3.4)

depending on some cutoff C and where Nit is the number of tests completed
for DAUi at year t and pit is the ith component of pt. This duality is required
because of the different sampling schemes for different stages of the knowledge
of disease prevalence. The first distribution corresponds to time-periods where
a DAU has a large number of deer tested for the disease. In these cases, the
Division of Wildlife knows that the disease is present and wishes to protect hunters
from eating infected animals. On the other hand, combinations of DAUs and
years when the number of tested carcasses is low correspond with the CDOW
searching for the disease in an area where it has not yet been found or confirmed
problematic. This data comes from animals found dead or ill, and hunters that
are willing to pay for the test. This search for the disease adds bias which we
explicitly include in the model with the parameter π and cutoff C.

We define η = (α, δ, γ, ω) as the vector of parameters for the update equation
(3.3). Given η and a starting vector of prevalences, p0, the updates of pt are
fixed and the likelihood is given by,

L( Y | p0, η, π, C ) =
∏

Nit>0

[
pYit

it (1 − pit)(Nit−Yit)
]1{Nit>C}

×
[
πYit(1 − π)(Nit−Yit)

]1{Nit≤C}
(3.5)

where 1A is 1 if condition A is true and zero otherwise. We assume that the value
of pi,t+1 in (3.5) depends on pit only through equation (3.3). The value C =3
provides a reasonable fit to the data (see Section 4). The posterior distribution
of parameters is proportional to

P( p0, η, π ) ∝ L(Y | p0, η, π, C ) �(p′) �(η) �(π) (3.6)

where q(·) denotes a prior distribution.
This model has qualitative characteristics, through the deterministic differen-

tial equations, that are consistent with current knowledge of CWD and is flexible
enough to accommodate spatial mixing of prevalences due to deer migration and
possibly other factors. Formalizing the model with a Bayesian hierarchy gives
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the added benefit of methods for comparing different models, testing whether or
not the disease is spreading in space (if γ > 0) and whether or not there disease
can coexist with the mule deer population (if 0 < δ < 1). The Bayesian hierarchy
also provides a way to check sampling schemes that will maximize information
from data collected in years to come.

Prior distributions for α, δ and π were all independent Beta distributions.
Specifically we chose a uniform prior for α, Beta(8,82) for δ and symmetric
Beta(1.5,1.5) for π. For the migration parameters γ and ω, the distribution is
proportional to the product of two Beta distributions, Beta(1,50) and Beta(1,100)
respectively, subject to the constraints that γ > ω and that maxi{

∑
j �=i Wij} < 1

Prior distributions for p0 were either Beta(1,200) or point mass at zero.
We formulated several versions of (3.3) with the goal of letting Bayes factors

(see equation (4.1)) guide our choice of model. The first set of models assume
that only a single DAU is infected at the 0th time step corresponding with 1975,
and all others have an initial value of zero. This is accomplished formally by
letting the prior distribution for pi0 be a point mass at zero for all DAUs except
the DAU of interest. The second set of models, follows in a stepwise-forward
manner and assume that two DAUs have positive, distinct prevalences at time 0,
while all other DAUs start with zero prevalence. The pattern continues adding
one DAU at at time. To reduce the search space, we focused on models for which
DAUs with the positive prevalence in 2002 had the ability to enter the model
with postive prevalence in 1975. We also explicitly ran models with ω > 0 and
ω = 0 in order to test whether or not the second order migration term affects the
model.

4. Results

We first find a reasonable cutoff value, C, for the likelihood (3.5). The joint
posterior distribution (3.6) can be factored so that the posterior of π given all
the data is independent of the posterior of η,p0. Thus, doing a search under any
model for the best level of C with a symmetric prior for π will yield a cutoff level
as close to 50% of observations that are diseased and 50% that are not. This
fact is obvious when considering that, for given n, the binomial distribution with
p = .5 accounts for more data variability than any other model. Thus, we found
that C = 3. In DAU-years where there are 4 or more carcasses tested for CWD,
the modeled prevalence will be from the updates given in (3.3), otherwise, we
assume that the proportion of deer that are tested and that actually have the
disease is π.

We compared the different models mentioned in Section 3 using Bayes factors.
Bayes factors are ratios of the distributions for the data, conditioned upon the
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Figure 2: Comparisons of the posterior sample with prior distributions for
parameters (a) p100 10, (b) α the acceleration parameter, (c) δ the long run
prevalence and (d) γ, the average propensity to migrate. The prior and his-
togram approximation of the posterior have been scaled to have maximum
value of one in order to highlight the difference between the two distributions.

model:

BF (i; j) =
∫ L(Y|η,p0, π,Mi)q(p0)q(η)q(π)dp0dηdπ∫ L(Y|η,p0, π,Mj)q(p0)q(η)q(π)dp0dηdπ

(4.1)

where Mi implies that the integration is with respect to the prior and like-
lihood under model i. We approximate the numerators and denominators of
the Bayes factors via a random sample of the prior distributions implied by
the models Mi and Mj . For k = 1, . . . K, draw the appropriate collection of
parameters, denoted by θik, from the prior distribution imposed by Mi. Let
�ik denote the evaluation of the log-likelihood implied by (3.5) evaluated at
θik and wik = exp(�ik − maxk{�ik}) and w̄i· =

∑
k wik/K. Then B̂F (i; j) =

exp{�i max − �j max}w̄i·/w̄j· The Bayes factor gives a weighting of the relative skill
of model i in fitting the data as compared with model j, and is related to a like-
lihood ratio test. Under this criterion, the model with p40 , p50 , p100 > 0, all other
DAUs having zero starting values, and ω = 0 is as or more effective than other
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Figure 3: Fitted values and corresponding frequentist confidence intervals for
the proportion of infected deer, based on the component wise median of the
posterior sample. Depicted are (a) DAU 4, (b) DAU 5, (c) DAU 10, (d) DAU
27 and (e) DAU 44. Observed prevalences are denoted with ◦, 95% confidence
intervals are denoted by � and the predicted value is denoted by ∇.

Figure 4: Predicted prevalences, for all DAUs based on the median curve based
on the posterior random sample.



32 Craig J. Johns and Christopher H. Mehl

models with the same number or more parameters. The estimated Bayes factor
was 1.18 when comparing this model with the similar model that also included
non-zero initial values for DAUs 3, 17, and 9. The next smallest Bayes factor
(3.55) was for the model that forced p50 = 0.

Figure 5: Solid line is the median track for prevalence based on the posterior
sample (N = 25,000). Dashed lines represent pointwise 95% credible intervals.

As the posterior distribution for this model depends on many nonlinear re-
lationships, we characterized its behavior using a random sample of size 25,000
drawn via an acceptance sampler. Scaled histograms of the variables p100 ,p40 ,p50 ,
α, δ, and γ from the posterior sample are given in Figure 2. For comparison, the
prior distribution is shown with a solid line. The prior and histogram approxi-
mation of the posterior have been scaled to to highlight the difference between
the two distributions giving some indication of the ignorance in the priors and
the strength of the data in the model.

Figure 3 shows the fitted prevalences, based on the median of posterior sample
(depicted by dashed line and ∇,) with corresponding 95% frequentist confidence
intervals for the prevalences (dotted line, �). The figure shows that the model
provides a reasonable fit to the data (solid line, ◦). The five DAUs shown here
are those in the endemic are, and the data corresponding to the five panels are
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primarily responsible for the model form as they carry much of the information
in the likelihood and hence posterior distribution.

Figure 4 shows the predicted prevalence curve for the DAUs based on the year
by year medians of the prevalence tracks based on the posterior sample. The
curves maintain the sigmoidal shape given by the logistic equation, increasing
with time toward the long-term stable state δ = 0.149. Those DAUs that were
first infected approach δ first. Because the spatial mixing term γ is greater than
zero, and because every DAU is connected with at least one other DAU via the
relationships in Table 1, all DAUs eventually become infected, and thus eventually
approach the stable state.

Figure 5 shows the medians (solid line) and 95% credible intervals (dashed
lines) for the prevalence tracks over time for the five endemic DAUs. The intervals
are narrow in the period where the data is strong (1996-2002) and grow wider
as we project further into the future. While the model is a greatly simplified
caricature of the actual dynamic process, it provides both a reasonable fit to the
data and reasonable predictions for future prevalence.

The Bayesian hierarchy allowed us to test and compare various sampling
schemes for 2003. For the comparison, we assumed that approximately 10,000
total mule deer tests for CWD could be afforded (just slightly above the 9,810
tests conducted in 2002.) To build sampling schemes, DAUs were classified into
one of four groups; (1) the endemic area, DAUs where the disease is well estab-
lished (4,5,10,27,44); (2) the new area, DAUs where the disease was found in
2002 (2,3,6,7,8,9,12,17); (3) neighbors, DAUs that are not in group 1 or 2 but
are “neighbors” (as defined in Table 1) to one or more DAUs in groups 1 or 2
(11 DAUs in this group); and (4) others, DAUs not near an area known to have
the disease (30 DAUs in this group). Relative weights were given to each group
according to the digits in the first column of Table 2, and sample sizes for each
DAU were calculated based on those weights and group membership.

Let β = (p010 , p04 , p05 , α, δ, γ) denote the parameters of scientific interest in
the model and β�

j denote the j-th vector in the posterior sample. For each
sampling design, 500 random draws from the posterior were made and for each
random draw the model was run forward to 2003. A random sample (Y�

k 2003)
of binomial random variables (see equation (3.4)) for year 2003 was generated
assuming the model fit implied by the random draw from the posterior sample and
the sample size imposed by the design. The conditional expectation, E(β|Y�

k,2003)

was estimated by ̂E(β|Y �
k,2003)k =

∑5000
j=1 β�

jwj with β�
j a random draw from the

posterior sample and wj proportional to the evaluated conditional distribution
of Y�

k 2003 given β�
j . We compared the sample variances of the 500 estimated

conditional means to compare the 13 sampling schemes.
In particular, we compared estimated generalized covariance (det(Σ̂)) and
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estimated total variance (tr(Σ̂)) for the 13 designs in Table 2. Here Σ̂ denotes
the estimated covariance matrix, and det() denotes the determinant. The designs
that put most emphasis on the areas with least data to date yields the best
improvement in terms of generalized variance and total variance. Further, for
each element of β, the first four designs in the table have the same order and
relative standing based on the estimated conditional variance of the parameter.

Table 2: Sample scheme weights with corresponding sample sizes for each group
and total sample size for 13 theoretical sampling schemes. Numbers in the log-
ratios column represent the log of the ratio of estimated generalized covariance
(|Σ̂|) of the estimated conditional means under the sampling scheme compared
with scheme 1144. Digits in the scheme column represent the relative weights
of the sample sizes for the four groups.

Scheme Group 1 Group 2 Group 3 Group 4 N log-ratios

1144 56 56 224 224 9,912 0, 0
1142 105 105 420 210 9,945 1.49
1122 105 105 210 210 9,975 2.11
1141 115 115 460 115 10,005 2.99
1441 90 360 360 90 9,990 3.99
1241 85 170 340 85 9,975 4.06
1111 185 185 185 185 9,990 4.24
1221 137 234 234 137 10,001 4.55
1211 161 322 161 161 9,982 5.10
2441 172 344 344 86 9,976 5.50
2211 248 248 149 149 9,983 6.24
2111 338 169 169 169 9,971 7.12
4221 456 228 228 114 10,032 7.34

5. Discussion

While prevalence is an important aspect of studying CWD, it is not the only
one. In many cases of equal importance in understanding the disease is the
number of deer that are in a given region and the ability of the disease to “burn
out,” coexist, or kill off the host. Although we have not explicitly modeled the
interplay between total population size and prevalence, there are many differential
equations models designed for such interactions but such models that include the
interaction of population size with prevalence are beyond the scope of this paper.
Notwithstanding, the model presented here does give some evidence that the
disease and the deer population can coexist.
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The posterior distribution on the long run disease prevalence δ has median and
mode at approximately 0.148. The corresponding estimated 95% credible interval
is (11.2%,20.4%). This gives some evidence of a non-zero long-run sustainable
level for the disease and that it is unlikely to disappear from the deer population.
Thus, carefully crafted strategies are of critical importance in order to manage
CWD.

There are three sources of uncertainty that contribute to the width of the
intervals in Figure 5. First is Monte Carlo error as the lines are based on a random
sample rather than explicitly calculated integrals of the posterior distribution.
This error was mitigated by using a random sample of size 25,000. Secondly
is uncertainty from the prior distributions propagated through the model. This
variability can be reduced by larger sample sizes in the future as the data will
swamp the prior. While the model presented here is sensible and stands on
firm mathematical underpinnings, it is not likely to be an exact representation
of the complex biological process controlling CWD. The deterministic updates
for prevalence are quite strict and may not accurately reflect the true nature of
disease spread. Features of the model contain structures that reflect the current
scientific knowledge of CWD. From what is currently known, the steady increase
to a sustainable level is reasonable over the given time frame.

Pairwise comparisons of the marginal posterior distributions indicate that
several of the variables are highly correlated. The plot of α versus δ (not shown)
from the posterior sample shows that nearly all of the simulated values occur on
a curvilinear ridge of high probability. Comparisons among α, δ, and γ show that
all these variables are all highly correlated with each other. The high correlation
between these variables makes it difficult to construct an efficient Markov chain
sampler for the posterior. In this application, the problem was circumvented using
an acceptance/rejection sampler, facilitated by the parsimony of the model. An
efficient Markov Chain sampler would be a valuable addition so that related, more
complicated models can be applied to this or other diseases and data situations.
Efficient MCMC sampling is beyond the scope of this paper and reserved for
future work.

As more is learned about the disease, the model can be modified to include the
added information. In particular knowledge of how the disease is spread could be
used to improve the disease migration effects modeled by elements of matrix W in
equation (3.3). A change in the form of W with current data may have some effect
on the estimation of δ, but these differences are likely to be quantitative rather
than qualitative. Likewise, as more is learned about transmission mechanism,
modifications to the form of acceleration, currently, α(δ1−p), can be considered
to reflect that knowledge. In particular, it is possible to let the acceleration
parameter, α, depend on DAU and covariates, such as deer density, range type
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and condition, and incorporated into the model via a logistic regression equation
for the level of α as a function of the covariates. Recent efforts by the Colorado
Division of Wildlife, such as the recent moratorium on transport of “domestic”
deer and elk from ranches or the increase in hunting season lengths and number
of licenses issued in endemic areas, may have an impact on the spread of the
disease. The effects of these kinds of policies could also be incorporated into the
model through modifications to the accelleration/decelleration parameter, α.

We have made some accommodations in the model to account for different
sampling schemes that are used based on the then current level of knowledge
regarding disease prevalence. Still, these accommodations are ad hoc and only
moderately reflect the true nature of the sampling mechanism. Notwithstanding,
the modification provides the model sufficient flexibility to accurately describe
the changing prevalences. This modification, in some sense, eliminates data from
the spatio-temporal model as the posterior of π given all the data is independent
of the other parameters. In essence, data that are used to improve knowledge
regarding π cannot be used to increase information about the other parameters.

Another possible avenue of future research is to determine the impact dif-
ferent control strategies imposed by a state wildlife division might have on the
posterior distribution of δ, and whether the controls could be used to lower the
long run prevalence to a level close to zero. The Bayesian hierarchy allows for
different schemes to be tested via computational simulation prior to implemen-
tation. In particular, the sampling designs in Section 4 suggest that the CDOW
should increase testing of deer harvested in non-endemic areas to gain the most
information about the transmission of the disease. This corresponds with conven-
tional wisdom that one learns more by asking questions for which the answer is
unknown than one learns by asking questions for which the answer is known. Part
of the effect may be due to the binomial assumption and the relationship between
the probability (prevalence) and variance of observations. Namely, the variance
of binomial distributions is smaller for distributions with smaller probabilities of
“success.”
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