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Abstract

Clustering is an essential technique for discovering patterns in data. Many clustering algorithms
have been developed to tackle the ever increasing quantity and complexity of data, yet algorithms
that can cluster data with mixed variables (continuous and categorical) remain limited despite
the abundance of mixed-type data. Of the existing clustering methods for mixed data types,
some posit unverifiable distributional assumptions or rest on unbalanced contributions of differ-
ent variable types. To address these issues, we propose a two-step hybrid density- and partition-
based (HyDaP) algorithm to detect clusters after variable selection. The first step involves both
density-based and partition-based algorithms to identify the data structure formed by continuous
variables and determine important variables (both continuous and categorical) for clustering.
The second step involves a partition-based algorithm together with our proposed novel dissimi-
larity measure to obtain clustering results. Simulations across various scenarios were conducted
to compare the HyDaP algorithm with other commonly used methods. Our HyDaP algorithm
was applied to identify sepsis phenotypes and yielded important results.

Keywords mixed data; variable selection

1 Introduction

Sepsis is a potentially life-threatening complication to infection with high mortality (Angus and
Van der Poll, 2013; Liu et al., 2014; Seymour et al., 2016). Although several potential therapies
for sepsis were promising in animal models, these therapies showed either no significant benefits
or conflicting results in humans. One difficulty in developing therapy for sepsis is that sepsis is not
a single disease; It comprises of endotypes with different responses to treatment (Scicluna et al.,
2017; Seymour et al., 2019). The objective of this study is to identify homogeneous subgroups of
sepsis patients so that we can better understand the heterogeneity of sepsis endotypes. Further
investigations on these subgroups together with current clinical guidelines could help physicians
design precision medicine strategies for better patient care (Jensen et al., 2012).

Our study takes advantage of the vast and variety of data in the electronic health records
(EHR) to address the knowledge gap existing in precision medicine for sepsis. We studied 20 189
patients recruited in the Sepsis ENdotyping in Emergency CAre (SENECA) project and aimed
to explore whether clinical sepsis phenotypes are identifiable for a patient in the emergency
department. Among the thirty clinical variables involved in the SENECA data, twenty-eight of
them are continuous, and the other two are categorical. One of the main challenges in clustering
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SENECA data is how to define dissimilarity between subjects in the data set as mixed variable
types (continuous and nominal categorical) are involved.

Several existing clustering methods claimed to be able to handle mixed types of variables.
Gower distance (Gower, 1971) was proposed to measure dissimilarity between subjects with
mixed types of variables, but the clustering results using Gower distance are dominated by cat-
egorical variables, as shown in our simulations. Note that in this context we will use “distance”
and “dissimilarity” interchangeably. The distance measure used in Factor Analysis of Mixed
Data (FAMD) can be applied on mixed data as well, even though FAMD was not originally
intended for clustering (Pages, 2014), therefore, its performance is not guaranteed. Distance
measure defined in K-prototypes (Huang, 1998) involves user-defined variable weights, but it
assumes that all categorical variables have the same weight, and that all continuous variables
have the same weight, which is not practical in most clinical applications. Finite mixture model
(FMM) (McCutcheon, 1987; Moustaki, 1996) is a model-based clustering method that can be
used to cluster mixed data. Assuming that the data is a mixture of several parametric distri-
butions, one can bypass the challenge of defining dissimilarity between subjects and transfer
the task of selecting the optimal number of clusters into model selection, which is a much more
straightforward approach in practice. By using this approach, we need to make parametric as-
sumptions for each variable. Unfortunately, the distributional assumptions are conditional on
the unknown cluster assignment, making them hard to verify from the data itself.

Motivated by the challenges encountered in clustering EHR data with mixed types us-
ing the aforementioned existing methods, we proposed a novel dissimilarity measure for mixed
variables and developed a Hybrid Density- and Partition-based (HyDaP) algorithm for clusters
identification which also can select the most important variables that drive clustering results.

The organization of the rest of the paper is as follows. In Section 2 we review the most
commonly used dissimilarity measures and clustering algorithms; In Section 3 we define three
data structures and propose a new clustering algorithm, HyDaP; In Section 4 we present perfor-
mance comparisons among different methods under various simulation settings; In Section 5 we
demonstrate the use of the HyDaP algorithm in the SENECA data to identify sepsis phenotypes;
And Section 6 is discussion.

2 Review of Dissimilarity Measures and Clustering Algorithms

In this section, we briefly review some existing dissimilarity measures and clustering algorithms.
In addition, we discuss the pros and cons of each measure or algorithm.

2.1 Dissimilarity Measures

Minkowski distance is a family of dissimilarity measures for numeric variables. Let x; be a vector
(Xi1, Xi2y oons x,»p)T representing p variables of subject i. For subjects i and i’, Minkowski distance
between the two is defined as follows:

m

14
d(x;, x;r) = Z Ixij —xiri "] m =1 (1)

j=1

where m is related to the shape of unit circle which is a two-dimensional contour with every point
on the contour at distance of 1 from the center (0, 0). Different choices of m lead to different
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distance measures. For example, m = 2 leads to the famous Euclidean distance which is intuitive
and able to represent physical distances. When m = 1, we obtain Manhattan distance which is
often used to detect hyperrectangular clusters. When m — oo, Equation (1) becomes Chebyshev
(maximum) distance which is the same as chess board distance since it is defined as the greatest
value of the differences among all dimensions. A potential problem of using the Minkowski dis-
tance is that variables with larger variances tend to dominate the others (Xu and Wunsch, 2005;
Shirkhorshidi et al., 2015), therefore, it is recommended to perform variable standardization (that
is, rescale the variable by dividing by its standard deviation) before applying this measure.

Other dissimilarity measures for numeric variables include cosine similarity measure, Pear-
son correlation, Mahalanobis distance, to name a few. Cosine similarity measures the angle be-
tween two vectors regardless of vector magnitudes. It is usually applied if we are not interested
in magnitudes, for example, for text mining as it captures text meanings instead of counting
numbers (Xu and Wunsch, 2005; Han et al., 2011). Pearson correlation is usually used in clus-
tering gene expression data (Xu and Wunsch, 2005), but it is sensitive to outliers. Mahalanobis
distance is scale-invariant, and takes into account variable correlations.

When variables are all categorical, simple matching dissimilarity is usually used: d(x;, x;/) =
Z;’:] 8(xij, xirj), where 8(x;;, xi;) = I(x;j # x;7j) indicating whether variable j are the same for
individuals i and i'.

None of above-mentioned dissimilarity measures can be applied to mixed data. Gower dis-
tance was proposed to calculate the distance between subjects with mixed types of variables. Let
X be a data matrix with n x p dimensions. Let the first 4 variables of X be continuous and the
(h + D™ to p™ variables be multilevel categorical variables or symmetric binary variables. Let
X; be a vector (xij, xzj, ..., xnj)T representing variable j. Gower distance between individuals i
and i’ is defined as:

p
d(xi,xi) = Y dj(xi, Xi), (2)
j=1
where
xij — i) if je{l,2, ..., h),
dj(Xl', X,-/) = ¢ Max; x;; — min; Xx;;
I (xij # xirj) if jeth+1,h+2,..,pl.

Gower distance for an asymmetric binary variable is calculated differently. Asymmetry
occurs when similarity within one level is perceived to be higher compared to the other level.
For example, breast cancer (yes/no) could be viewed as an asymmetric binary variable since
individuals with breast cancer are much more similar than those without breast cancer (which
could include men and women, adolescents and elder people). If variable j is an asymmetric
binary variable, then d;(x;, x;/) is defined as 0 when x;; = x;/; and they are the level with larger
similarity, d;(x;, x;) is defined as 1 otherwise.

In practice, there is one issue in applying Gower distance: As we will later show in sim-
ulations, Gower distance tends to give much larger weights to categorical variables than to
continuous ones. This is because the distance due to a categorical variable is always 0 or 1,
the minimum and the maximum of possible distance values, granting categorical variables more
power in distinguishing subjects.

Another distance that could be used for mixed data is the distance defined in FAMD:

p
d*(xi, xp1) = Z d; (xi, xp),

j=1
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where
dz(x < ) (X,‘j —xi/j)z lf] (S {1, 2, ceny h}
(Xi, X)) = C; i Vit r
J le’lpiﬂ(;—;;—ﬁ)z if jeth+1,h+2,..,p},

Cj
yiji = 1(x;j = Lj1), Zyijl =L jeth+1,h+2, .. p}
=1
C; is number of levels of categorical variable j; pj is proportion of I'" category of variable j;
L is I"" category of variable j.

2.2 K-Means-Based Clustering Algorithms

K-means (MacQueen et al., 1967) is the most well-known and applied clustering method in
practice. The basic idea is to partition subjects with respect to minimizing the within-cluster
sum of squares (WCSS). This algorithm is very efficient and has been the root of many later
developed ones. It is usually used together with Euclidean distance. To cluster categorical data,
K-modes (Huang, 1998) algorithm was developed by replacing Euclidean distance with simple
matching dissimilarity measure, and replacing mean with mode to represent cluster centers.

To identify clusters with mixed types of variables, the partition around medoids (PAM)
(Kaufman and Rousseeuw, 2009) has been proposed. PAM is a modification of K-means with
a different definition of cluster centers. Unlike K-means which uses within-cluster mean to rep-
resent its centers, PAM uses medoids which are actual data points in the dataset. This makes
defining centers of categorical variables possible. Moreover, medoids are analogous to medians
and hence PAM is more robust to outliers. One drawback however is that PAM is computation-
ally intensive and inefficiency, making it less ideal for processing large data sets.

K-prototypes algorithm is another modified version of K-means with the ability of handling
mixed types of variables. Its centers are called prototypes, which use within-cluster mean to
represent continuous variables and mode for categorical variables. The distance between subjects
i and i’ is defined as:

h P
d(x;, Xpr) = Zdj(xi, X)) +y Z dj(x;, x;r),
j=I j=h+1
where
(xij —Xi/j)z lf] € {1, 2, ,I’l}
I(xij;éxi/j) iij{h+],/’l+2,...,p},

and y is a user-defined weight parameter for categorical variables. K-prototypes lacks flexibility
in variable weights as it assumes equal importance for variables of the same type. Moreover, the
tuning parameter y is user-defined rather than data-driven.

Sparse clustering (Witten and Tibshirani, 2010) is an advanced clustering framework pro-
posed for cluster identification as well as variable selection. The capability in performing data-
driven variable selection in the sparse clustering method is acquired through incorporating a
lasso-type penalty and variable weights to its objective function:

dj(x;,x;) =

p
maximize Z w; fi(X;; ©)

w;®eD =

subject to [|w[* < L, [|w]; < s, w; >0V,
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where n is number of subjects; p is number of features; w = (wy, wy, ..., wp)T is the vector of
weights; © is a vector of parameters restricted to be in set D; f;(X;; ®) is a function involving
feature j only; and s is the L1 norm restriction, which is a tuning parameter in the algorithm.
If we use the objective function of sparse clustering to optimize the weighted WCSS, we will
obtain sparse K-means. Although tuning the parameter s may be a complicated task, the sparse
K-means clustering method distinguishes itself for being able to identify clusters and assess the
relative importance of variables concurrently.

The optimal number of clusters, K, can be determined through applying the consensus
clustering framework (Monti et al., 2003; Wilkerson and Hayes, 2010), and assessing the number
of clusters, cluster memberships, and stability of clusters discovered from multiple runs of the
K-means algorithm with different values of K. In each run of the K-means algorithm, a consensus
index between each pair of subjects is calculated as the ratio of the times the pair was assigned
to the same cluster over the times both members in the pair were sampled. These consensus
indices can serve as measurements of similarity. The determination of K is achieved by checking
the consensus matrix heatmaps and cluster-consensus values. The number of clusters that yields
the cleanest heatmap and highest cluster-consensus values is the optimal number of K.

2.3 Hierarchical Clustering

Hierarchical clustering (Ward Jr, 1963) is another category of clustering methods. It first grows
a dendrogram which is a tree-like diagram showing hierarchical structure of subjects and then
cuts the dendrogram to obtain clusters. One advantage of hierarchical clustering is that the
generated dendrogram is very informative and provides information of cluster structure besides
cluster assignments. Its disadvantages include no global objective function, a greedy type of
procedure, the sensitivity to outliers, and inefficient for large data sets. Hierarchical clustering
can be inserted into sparse clustering framework as well.

2.4 Density-Based Clustering

Another important category of clustering methods is density-based clustering. Some researchers
group density-based algorithms under the partition-based category, but most of the researchers
including us list them as a separate category. All above-mentioned algorithms are distance-
based methods which are more appropriate for detecting clusters that are convex shaped and
with similar sizes and densities. If the underlying clusters have arbitrary shapes, density-based
clustering algorithms may work better. Density-based spatial clustering of applications with
noise (DBSCAN) (Ester et al., 1996) and ordering points to identify the clustering structure
(OPTICS) (Ankerst et al., 1999) are two widely used density-based algorithms.

Both algorithms involve two parameters: e and MinPts. € represents the radius of an object’s
neighborhood and MinPts represents number of objects within this neighborhood. The rough
idea of DBSCAN is that every object in a cluster has at least MinPts objects including itself in
its neighborhood defined by ¢ (Ester et al., 1996; Ankerst et al., 1999). DBSCAN does not need
input of K, and it is robust to noise. However, it is not well suited for high dimensional data or
for clusters with varying densities.

OPTICS is capable of detecting clusters with varying densities and suitable for high di-
mensional data. In OPTICS, a core object is one having at least MinPts objects including itself
within the & neighborhood. While core distance is the smallest value that makes a core object to
be a core object.
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Figure 1: Hlustration of different reachability plots.

If object A in the dataset is a core object, the algorithm will process all the objects in the ¢
neighborhood of object A from the nearest to the farthest. For each object processed, OPTICS
also records its processing order within the dataset and calculates its reachability distance to
the nearest core object. Reachability distance of object A with respect to a core object C, for
example, is defined as the larger of the two values: The actual distance between objects A and
C vs. object C’s core distance. If A is not a core object, the algorithm will move on to the next
object in the dataset that is not yet processed. After processing all the objects, OPTICS can
generate a reachability plot for the dataset in which processing order and reachability distance
are the horizontal axis and vertical axis, respectively.

Reachability plot provides an overall two-dimensional spatial structure of a dataset regardless
of its original dimensions. Each trough on the reachability plot can be viewed as a single cluster.
The edge between two side-by-side troughs represents the distance between two closest bordering
objects from the corresponding two clusters. A higher edge implies that the corresponding two
clusters are farther apart while a low or unclear edge implies that the two adjacent clusters are
not much distinct from each other. A hypothetical example is depicted in Figure 1. From the
left panel we can observe that data 1 contains 3 clusters whereas no natural cluster exists in
data 2. On the right panel, we can observe 3 clear troughs in the reachability plot of data 1 and
only 1 large trough in the reachability plot of data 2. This is consistent with what we observed
from the scatter plots on the left panel. Although one can show clustering in data 1 and data 2
with scatter plots, the reachability plot is much easier to use for demonstrating the overall data
structure when dealing with data in a high-dimensional space.
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2.5 Model-Based Clustering

FMM is a model-based clustering method assuming that the data consists of K latent clusters. Its
density function is defined as f(X) = Zle 7 g (X), where m; is the cluster mixture probability,
Zle m, = 1; and g; is the conditional distribution given cluster k. For a sample of size n, the
log-likelihood can be written as:

n n K
L=) logf(x)=) log) mg(x).
i=l1 i=1 k=1

The EM algorithm is usually used to obtain the MLE. The posterior probability of each subject
belonging to each cluster can be calculated as:

Tk 8k (X;)

> i (%)

Subjects are then assigned to the cluster with which the posterior probability is the largest.
These probabilities help discriminate core subjects (those with high probability of belonging
to assigned cluster) and border subjects (those with low probability of belonging to assigned
cluster) within each cluster. Given the parametric form of FMM, formal inference is possible.
In addition, selecting the number of clusters becomes a model selection problem. The main
drawback however is that the distributional assumptions are conditional on the unknown cluster
assignment, making those assumptions hard to verify from the data.

ﬁ(k|Xi) =

2.6 Clustering Algorithms for Mixed Types of Variables

Except the algorithms mentioned in the introduction, there are some other approaches to handle
mixed types of variables. These include categorizing all continuous variables (Haripriya et al.,
2015) or converting categorical variables into continuous or dummy variables and then treat
the dummy variables as continuous (Hennig and Liao, 2013). However, both ideas will lead to
information loss. Another common idea is to cluster continuous part of the data and categorical
part separately. The final clusters are obtained by ensembling these two sets of results (Reddy
and Kavitha, 2012). This method impractically weighs continuous and categorical variables
equally and ignores possible mutual influences between the two variable types.

3 Hybrid Density- and Partition-Based Clustering Algorithm

To address the limitations of the existing clustering methods in handling data containing mixed
types of variables, we propose a hybrid density- and partition-based clustering (HyDaP) algo-
rithm which consists of a pre-processing step (step one) and a clustering step (step two).
The pre-processing step identifies the data structure formed by continuous variables and recog-
nizes the important variables for clustering. In the clustering step, our proposed dissimilarity
measure is used to obtain a dissimilarity matrix, which can be fed into PAM to obtain the final
results. The rationale that we use continuous variables only in pre-processing step to identify
data structure is that we believe in general continuous variables provide richer information than
categorical ones. The HyDaP algorithm is shown below.
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Algorithm 1: HyDaP Algorithm.

1 Run a density-based algorithm on all continuous variables
2 if Number of clusters in the OPTICS reachability plot > 1 then
3 It is defined as natural cluster structure
4 Select continuous variables through Sparse K-means
5 Select categorical variables through Cramer’s V
6 else
7 Run consensus K-means on all continuous variables
8 if K> 1 from results of consensus K-means then
9 It is defined as partitioned cluster structure
10 Keep all continuous variables
11 Select categorical variables through Cramer’s V
12 else
13 It is defined as homogeneous structure
14 Remove all continuous variables
15 Select categorical variables through Cramer’s V
16 end
17 end

18 Run PAM on selected variables using proposed dissimilarity

3.1 Pre-Processing Step (Step One)

To help with variable selection and better understand the data set, we first define three data
structures for the space spanned by the continuous variables as: Natural cluster structure (data
structure one); partitioned cluster structure (data structure two); and homogeneous structure
(data structure three). Once the data structure is known, we apply tailored variable selection
procedures. At the end of the pre-processing step, a set of selected variables will proceed to the
clustering step (step two). A flow chart of step one is in online Supplementary Materials.

3.1.1 Definition of Three Data Structures

Data spanned in the covariate space of continuous variables can be divided into two scenarios:
With and without natural clusters. Therefore, we use a density-based clustering algorithm (e.g.,
OPTICS) and resulted reachability plot to help understand the spatial structure of the data. If
we observe multiple troughs in a reachability plot, as illustrated in reachability plot of data 1 in
Figure 1, this indicates existence of distinct clusters, i.e., the corresponding dataset has natural
clusters. We call this type of structure natural cluster structure (data structure one) and aim to
identify these distinct clusters. If we only observe one trough or no clear through in the reacha-
bility plot (e.g., reachability plot of data 2 in Figure 1), this indicates that distinct clusters do
not exist. Then we will investigate whether data points in the continuous covariate space are
sufficiently heterogeneous to be further partitioned. We use consensus clustering framework for
all continuous variables to access the possible heterogeneity by checking the selected optimal
number of clusters. If we obtain > 2 clusters in consensus clustering, this indicates that het-
erogeneity exists and we can obtain stable clusters through partitioning. We call this type of
structure partitioned cluster structure (data structure two). If the optimal number of clusters
is one from the consensus clustering results, this indicates that continuous part of the data is
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Figure 2: Flowchart of Step 1 of the HyDaP algorithm

highly homogeneous and cannot be further partitioned. We call this type of structure homoge-
neous structure (data structure three).

3.1.2 Variable Selection

After identifying the data structure, we conduct data structure tailored variables selection.
Under the natural cluster structure, distinct clusters can be determined by continuous vari-
ables. Therefore, we would like to select those having high contributions. As shown in Figure 2,
we apply sparse K-means on all continuous variables and keep those with high weights (sug-
gestions of the weight threshold can be found in Section 3.3.2). Number of clusters under this
structure can be determined by the number of troughs in the reachability plot. Next, we calcu-
late Cramer’s V between each categorical variable and the cluster membership obtained from
sparse K-means. We will only select categorical variables with high Cramer’s V values.
Cramer’s V is defined as:

X*/n
mintk —1,r — 1)’

where x? is Pearson Chi-square test statistics, n is sample size, k and r are number of columns
and rows of the contingency table, respectively. Cramer’s V has been used to measure the
association between nominal variables. It ranges from 0 to 1. A larger number indicates a
stronger association, vice versa. Unlike the p-value, Cramer’s V is not affected by the sam-
ple size. Cramer’s V exceeding 0.3 is defined as high values in this step indicating a moderate
to strong association as 0.3 is a commonly used cutoff value. This is a general suggestion rather
than a universal consensus cutoff. In fact, any number between 0.3 and 0.5 led to the same
results in our simulation studies.
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Under the partitioned cluster structure, distinct clusters do not exist; However, covariate
space of all continuous variables are sufficiently heterogeneous to be further partitioned. This
structure indicates that all of the continuous variables together contribute to heterogeneity
but none of them has the driving influence. Therefore, we keep all continuous variables and
run consensus K-means to select the optimal number of clusters. Next, we calculate Cramer’s V
between each categorical variable and the cluster membership obtained from consensus K-means.
We will only select categorical variables with high Cramer’s V values.

Under the homogeneous structure, no distinct cluster exists and we are not able to further
partition continuous covariate space into > 2 homogeneous subgroups. Therefore, we dropped all
continuous variables as they are non-distinguishable across clusters. Next, we calculate pairwise
Cramer’s V values among categorical variables and only select pairs with high Cramer’s V values.

3.2 Clustering Step (Step Two)

After variables with high contributions are selected, we proceed to the final clustering step. This
step is the same across all data structures. We calculate the dissimilarities between subjects
using our proposed dissimilarity measure, a modified version of the Gower distance. Assume
that the first & variables are continuous and the rest are categorical. Our proposed dissimilarity
between subjects i and i’ is defined as:

p
d (xl ’ Xl

d(x;, %)) = Z Y i di (X, Xy)

3)

where d;(x;, x;7) is the same as in Equation (2).

Our modification is based on the idea of standardization to avoid variables with high vari-
ability be extremely influential to clustering results. It is motivated by the definition of Gower
distance for categorical variables as they receive extreme dissimilarity values 0 or 1, which could
exhibit high variability. This allows them to exert greater influence in the clustering results even
if they are less informative than the continuous ones.

Below we show how our modification on dissimilarities is analogous to the standardization
on continuous variables. Standardized squared Euclidean distance between subjects i and i’ with
respect to a continuous variable j is:

2
x., x./.
d2 i» Xi’) = J - i 9
j (i %) {sd(xj) sd(Xj)}

which can be re-written as:

(xij — xir j)2
n—2 Zosﬁo’ (xoj - x()/j)z ’
where the numerator is the original squared Euclidean distance, the denominator is proportional
to the sum of all pairwise distances. We adopt this idea to standardize the Gower distance,
namely we divide the original Gower distance of variable j by sum of all pairwise Gower distance
of variable j as shown above.

If after the pre-processing step all selected variables are continuous, we can just apply usual
clustering methods to obtain the final clustering results.

2 —
dj(Xi,Xi/) =
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3.3 Parameter Selection

In this section we provide general suggestions on the selection of (1) the optimal number of
clusters; (2) continuous variables under natural cluster structure.

3.3.1 Number of Clusters

Under the natural cluster structure, the number of clusters can be decided by the number of
troughs in the reachability plot. Under the partitioned cluster structure, the number of clusters
can be selected from the results of the consensus clustering. Under the homogeneous structure, we
only select categorical variables in determining cluster membership. Hence we suggest construct-
ing a dissimilarity matrix using our proposed dissimilarity measure and then plot the number
of clusters against the corresponding within-cluster sum of dissimilarities. In this plot, we look
for an elbow for the optimal number of clusters.

3.3.2 Selecting Continuous Variables Under the Natural Cluster Structure

Selection of the continuous variables with high weights under the natural cluster structure could
be subjective because of the choice of the weight threshold. When it is not that obvious to
select variables based on weights, we suggest applying sparse K-means for continuous part of
each bootstrapping data set and then calculate the between-cluster sum of squares (BCSS). We
then order these variables by their median BCSS from the smallest to the largest and plot the
median (with 2.5"" quantile and 97.5" quantile interval) of BCSS. Then we drop variables whose
BCSS values are small or far away from the others. Our suggestion here is a heuristic one. Users
can always incorporate other information and make their own judgements.

4 Simulation Studies

In this section we use simulations to evaluate the performance of the HyDaP algorithm relative to
the existing approaches. Assuming that there are three underlying true clusters with cluster sizes
of 40, 40, and 120. In terms of variable importance, we considered scenarios (1) both variable
types contribute to clustering, (2) only continuous variables contribute to clustering, and (3)
only categorical variables contribute to clustering. All three data structures were covered in
simulations. Details of simulation settings are in online Supplementary Materials.

For each setting, 500 datasets were generated. Clustering was performed on each dataset
using the proposed HyDaP algorithm. We compared its performance with PAM with Gower
distance, PAM with FAMD distance, K-prototypes, and FMM assuming normal distribution for
continuous variables and binomial /multinomial distribution for categorical variables. To compare
our proposed dissimilarity with Gower distance, the HyDaP with Gower distance and PAM with
proposed dissimilarity were also added in the simulation. To examine the impact of conditional
correlation on clustering performance, additional simulations imbued with a pairwise correlation
of 0.4 conditional on true cluster labels were conducted. Since we know the true cluster labels,
the adjusted Rand index (ARI) (Rand, 1971; Hubert and Arabie, 1985) was calculated and
used to evaluate the performances of different methods. ARI is used to measure the agreement
between two nominal variables. Its largest value is 1 indicating perfect agreement and its smallest
value is close to 0 indicating no agreement. For the purpose of evaluating clustering performance
in simulations, higher ARI values indicate better agreement with true cluster labels and hence
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Figure 3: Reachability plots in different simulation settings.

better performance. Median along with the 2.5 and 97.5"* percentiles were reported for all
statistics.

4.1 Setting 1: Both Types of Variables Contribute to Clustering
4.1.1 Setting 1(a): Natural Cluster Structure

In simulation 1(a), we simulated a total of five variables: Four continuous and one categorical.
All except one continuous variable truly contribute to clustering. The sole categorical variable
also contributes to clustering.

In Step one of the HyDaP algorithm, the reachability plot (Figure 3a) indicated three
clusters. This setting has natural cluster structure as three distinct clusters exist. Table 1 shows
the very low contribution of x4 from the sparse K-means and the strong association between xs
and the clusters identified by the sparse K-means. We dropped x; and kept all the others.

In Step two, we applied PAM along with the proposed dissimilarity measure on the selected
variables from Step 1: xi, x3, x3, and xs.

As shown in Table 2, performance of PAM with our proposed dissimilarity (ARI: 0.97 [0.90,
1.00]) is almost the same as the HyDaP algorithm (ARI: 0.97 [0.92, 1.00]). Similarly, performance
of PAM with Gower distance (ARI: 0.70 [0.58, 0.80]) is the same as the HyDaP with Gower
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Table 1: Results from pre-processing step in different simulation settings. All weights and
Cramer’s V values are presented in the form of median (2.5th percentile, 97.5th percentile).

Sim 1(a) Sim 1(b) Sim 2(a) Sim 2(b) Sim 3
Data Structure
Natural cluster Partitioned cluster Natural cluster Natural cluster Homogeneous structure
Weight - Weight Weight -
x1: 0.49 (0.46, 0.52) x1: 0.58 (0.57, 0.58) x1: 0.54 (0.51, 0.57)
xp: 0.59 (0.58, 0.61) Keep all xp: 0.56 (0.54, 0.57) xp: 0.51 (0.48, 0.54) Drop all
x3: 0.64 (0.62, 0.65) continuous x3: 0.60 (0.59, 0.61) x3: 0.44 (0.38, 0.48) continuous
x4: 0.00 (0.00, 0.02) variables x4: 0.00 (0.00, 0.02) x4: 0.50 (0.45, 0.54) variables
x5: 0.00 (0.00, 0.02)
Cramer’s V Cramer’s V Cramer’s V Cramer’s V Pairwise

Cramer’s V
x5: 0.66 (0.57, 0.75) xqp: 0.12 (0.05, 0.21) x5: 0.09 (0.04, 0.17) xg: 0.12 (0.05, 0.21) x5 xg: 0.12 (0.04, 0.20)
x13: 0.77 (0.69, 0.85) x7: 0.09 (0.04, 0.17) x5 x7: 0.69 (0.60, 0.77)
x14: 0.78 (0.69, 0.86) xg: 0.09 (0.04, 0.17) xg x7: 0.12 (0.04, 0.19)

distance (ARI: 0.70 [0.59, 0.80]). This is expected as HyDaP only removed one variable in this
setting. In addition, these results indicate that our proposed dissimilarity is superior to Gower
distance regardless of clustering algorithm as Gower distance tends to downplay contributions
of continuous variables. Although K-prototypes (ARI: 1.00 [0.96, 1.00]) and FMM (ARI: 1.00
[0.98, 1.00]) both performed slightly better, our HyDaP algorithm was able to identify important
variables. PAM with FAMD distance (ARI: 0.78 [0.66, 0.89]) performed poorly.

4.1.2 Setting 1(b): Partitioned Cluster Structure

In simulation 1(b), we simulated a total of fourteen variables: Eleven continuous and three
categorical. Six out of eleven continuous variables truly contribute to clustering; Two out of
three categorical variables contribute to clustering.

In Step one of the HyDaP algorithm, Figure 3b indicated that no natural clusters exists.
After conducting consensus K-means, we chose three as the optimal number of clusters as its
corresponding cluster-consensus values were the largest. Thus, a partitioned cluster structure
was identified. All continuous variables were retained for the next step. Variable x;, was dropped
because of its small Cramer’s V with cluster assignments obtained in consensus K-means.

In Step two, PAM with proposed dissimilarity measure was applied on x1, x3,..., X11, X13,
and x4 to obtain final results.

Performance of the HyDaP algorithm is satisfactory (ARI: 0.95 [0.87, 1.00]). Although it was
unable to eliminate continuous variables that are purely noise, the HyDaP algorithm revealed
that no continuous variable has driving effect but all of them together lead to heterogeneity in
the feature space spanned by all of these continuous variables. The HyDaP with Gower distance
performed similarly well as noise categorical variable x, was removed. On the other hand, PAM
with Gower distance performed worse (ARI: 0.87 [0.76, 0.96]) as variable x;, was included and
Gower distance tends to amplify its contribution. If Gower distance is replaced to our proposed
dissimilarity, the performance becomes as good as the HyDaP (ARI: 0.93 [0.83, 0.99]). In this
setting, K-prototypes (ARI: 0.93 [0.79, 0.95]) and PAM with FAMD distance (ARI: 0.93 [0.84,
0.98]) also worked well while performance of FMM varied widely from sample to sample (ARI:
0.98 [0.44, 1.00]).
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Table 2: Performance comparison under different simulation settings.

ustering Metho , median (2.5th percentile, 97.5th percentile
Clustering Method ARI, median (2.5th ile, 97.5th il
Sim 1(a) Sim 1(b) Sim 2(a) Sim 2(b) Sim 3
HvDaP 0.97 0.95 1.00 0.98 0.75
¥ (0.92,1.00)  (0.87,1.00)  (1.00, 1.00)  (0.92, 1.00)  (0.63, 0.85)
. 0.70 0.95 1.00 0.98 0.71
HyDaP + Gower distance 59 ' g0y (0.88,1.00)  (1.00,1.00)  (0.92, 1.00)  (0.57, 0.82)
o 0.97 0.93 0.99 0.34 0.73
PAM + HyDaP dissimilarity o 90" 00y (0.83,0.99)  (0.90, 1.00)  (0.32, 0.98)  (0.28, 0.84)
. 0.70 0.87 0.00 0.23 0.71
PAM + Gower distance 50 0 90y (0.76, 0.96)  (—0.01, 0.02) (0.00, 0.34)  (0.31, 0.84)
. 0.78 0.93 0.34 0.34 0.73
PAM 4 FAMD distance - 6 89)  (0.84,0.98) (=001, 0.42) (0.08, 0.39)  (0.22, 0.84)
Kebrototvbes 1.00 0.93 1.00 0.58 0.17
Prototyp (0.96,1.00)  (0.79,0.95)  (1.00, 1.00)  (0.38,0.99) (—0.01, 0.26)
1.00 0.98 1.00 0.41 0.72

Finite mixture model

(0.98,1.00) (0.44,1.00)  (0.69, 1.00)  (0.33,0.58)  (0.56, 0.85)

4.2 Setting 2: Only Continuous Variables Contribute to Clustering
4.2.1 Setting 2(a): Natural Cluster Structure

In simulation 2(a), we simulated a total of five variables: Four continuous and one categorical.
This setting is the same as simulation 1(a) except that the sole categorical variable does not
contribute to clustering.

In Step one of the HyDaP algorithm, x4 was dropped due to its low contribution in the
sparse K-means. Table 1 shows a weak association between the categorical variable x5 and
clusters identified by the sparse K-means.

In Step two, we applied the sparse K-means on x;, x,, and x3 as they are all continuous
variables. In this setting, the performance of the HyDaP algorithm (ARI: 1.00 [1.00, 1.00]) and
the HyDaP with Gower distance (ARI: 1.00 [1.00, 1.00]) are the same as both of them became
sparse K-means after all categorical variables were removed. However, PAM with Gower distance
(ARI: 0.00 [—0.01, 0.02]) performed extremely poorly as clustering is driven by the single noise
categorical variable. Replacing Gower distance with proposed dissimilarity provides satisfactory
results (ARIL: 0.99 [0.90, 1.00]). K-prototypes (ARI: 1.00 [1.00, 1.00]) also worked well. There
were a few simulation runs of FMM whose performance was not satisfactory (ARI: 1.00 [0.69,
1.00]). PAM with FAMD distance (ARI: 0.34 [—-0.01, 0.42]) performed poorly.

4.2.2 Setting 2(b): Natural Cluster Structure

In simulation 2(b), we simulated a total of eight variables: Five continuous and three categorical.
Four out of five continuous variables truly contribute to clustering and follow highly skewed
distributions. None of the categorical variables contributes to clustering.

In Step one of the HyDaP algorithm, Figure 3d shows three distinct clusters and hence
this setting was identified as natural cluster structure. We dropped xs because of its small
contribution to clustering as shown in Table 1. All categorical variables were dropped as well
given their weak associations with clusters obtained in the sparse K-means.
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In Step two, we applied the sparse K-means on x;, x5, x3, and x4 since they are all continuous
variables. In this setting, the performance of the HyDaP algorithm (ARI: 0.98 [0.92, 1.00]) and
the HyDaP with Gower distance (ARI: 0.98 [0.92, 1.00]) are the same, similar to setting 2(a).
PAM with proposed dissimilarity (ARI: 0.34 [0.32, 0.98]), PAM with Gower distance (ARI: 0.23
[0.00, 0.34]), K-prototypes (ARL 0.58 [0.38, 0.99]), FMM (ARL 0.41 [0.33, 0.58]), and PAM
with FAMD distance (ARI: 0.34 [0.08, 0.39]) all performed poorly. This was expected for FMM
because most of the continuous variables were not normally distributed conditional on the true
cluster labels.

4.3 Setting 3: Only Categorical Variables Contribute to Clustering
4.3.1 Setting 3: Homogeneous Structure

In simulation 3, we simulated a total of seven variables: Four continuous and three categorical.
None of the continuous variables truly contributes to clustering. Two out of three categorical
variables contribute to clustering.

In Step one of the HyDaP algorithm, Figure 3e indicates no natural clusters exist. After
conducting consensus K-means, the optimal number of clusters chosen was one because cluster-
consensus values were low for all numbers of clusters. Hence this was identified as homogeneous
structure. All continuous variables were dropped but categorical variables x5 and x; were kept
due to their strong association with each other as shown in Table 1.

In Step two, PAM with proposed dissimilarity measure was applied on x5 and x7.

In this setting, the HyDaP algorithm performed the best (ARI: 0.75 [0.63, 0.85]) and K-
prototypes did the worst (ARI: 0.17 [—0.01, 0.26]). Performance of the HyDaP with Gower
distance (ARI: 0.71 [0.57, 0.82]) is similar to the HyDaP as both of them only involved categorical
variables in final clustering. Performance of PAM with proposed dissimilarity (ARI: 0.73 [0.28,
0.84]), PAM with Gower distance (ARI: 0.71 [0.31, 0.84]), FMM [ARI: 0.72 (0.56, 0.85)] and
PAM with FAMD distance (ARI: 0.73 [0.22, 0.84]) are similar.

4.4 Variables Are Conditionally Correlated

To assess the impact of within-cluster correlation, simulations for each of the five settings above
was repeated with pairwise correlation of 0.4 for all continuous variables conditional on true
cluster labels. Results are summarized in online Supplementary Materials. Within-cluster cor-
relation had little to no impact on all the methods except FMM. In some situations, it led to
worse performance of FMM. This is expected since FMM assumes conditional independency,
namely all variables are independent with each other conditional on clusters labels. However,
we did observe that in simulation 3 when none of the continuous variables contributes to clus-
tering, the optimal number of clusters selected by the consensus K-means was two instead of
three (figures not shown here). This is understandable since all pairs of continuous variables are
correlated given true cluster labels, therefore, they share a lot of common information. To some
extent we can use only one of them without losing much information as all others as redun-
dant. For any single continuous variable we can potentially divide it into two subgroups that
have some differences. But this does not essentially mean these two subgroups can be viewed as
two clusters. Therefore, if we observe that two is the optimal number of clusters in consensus
clustering results and most pairs of continuous variables have high conditional correlations, we
should be cautious. Our suggestion is to look for continuous variables that have similar clinical
meanings e.g., Aspartate Aminotransferase (AST) and Alanine Aminotransferase (ALT), since
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these variables are very likely to have high correlations within clusters. For these variables we
can only keep one of them in clustering.

4.5 Simulation Summary

From the simulation studies, we found that our proposed HyDaP algorithm was consistently
the top or one of the top performers across all simulation settings. Moreover, we found that (1)
Our proposed dissimilarity is superior to Gower distance as it better balances the contribution
between continuous and categorical variables; (2) When categorical variables do not contribute
much to clustering, PAM with Gower distance performed poorly; (3) When continuous variables
follow arbitrary distributions, FMM may not perform well due to assumption violation; (4) When
none of continuous variables contributes to clustering, K-prototypes may fail; (5) Performance
of PAM with FAMD distance was not stable across different scenarios as its distance measure
is not specifically designed for clustering.

4.6 Special Cases

In this section, we will discuss two special cases in which the proposed HyDaP algorithm may not
perform well. Special case 1 occurs when categorical variables can further divide those clusters
formed by continuous variables. Special case 2 occurs when continuous variables alone are not
informative in clustering (i.e., continuous variables are homogeneous) but can detect clusters if
used jointly with categorical variables.

4.6.1 Special Case 1

Consider two variables where x; is continuous and x; is categorical with three levels A, B,
and C. If we use x; only, we will obtain two clusters with respect to the lower and the higher
values of x; (bimodal), as shown in the top left panel of Figure 4. When x, is added, we can
detect 4 clusters, with the lower values of x; divisible into categories A and B of x, and higher
values of x; divisible into categories B and C of x,, see top right panel of Figure 4. The HyDaP
algorithm detects just two clusters because it can only use continuous variables x; to determine
the optimal number of clusters. With this limitation in mind, we investigated the following: (1)
Whether it is possible for other methods to select the correct number of clusters, and (2) how
different clustering methods perform given the true number of clusters. In this simulation, we
set 4 clusters of size 50 for a total sample of 200, also used 500 datasets to be consistent with
the previous settings.

Under the assumption of unknown true number of clusters, we compared methods by finding
the optimal number of clusters according to the corresponding criteria (WCSS, average silhou-
ette, BIC, etc.). The results are that PAM with proposed HyDaP dissimilarity, K-prototypes,
and PAM with FAMD distance chose 4 as the optimal number of clusters while PAM with Gower
distance selected 3, and FMM selected 2 in most of the simulation runs. Note that the HyDaP
and PAM with proposed HyDaP dissimilarity did the same in this setting because no variable
was dropped in the HyDaP. Therefore, if we suspect that the categorical variables will further
divide those clusters formed by the continuous variables, we can overcome the limitation of the
HyDaP by trying different numbers of clusters and selecting the optimal one.

We further explored the clustering performance of all methods assuming that 4 is the
optimal number of clusters. All methods performed similarly with a median ARI around 0.7 to
0.8 except FMM (ARI: 0.47 [0.39, 0.65]).
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Figure 4: Simulation settings of two special cases.

In summary, the proposed HyDaP algorithm identifies fewer clusters in case 1 initially,
but after trying different numbers of clusters, the HyDaP is able to select the optimal one
and achieve satisfactory clustering performance. PAM with proposed HyDaP dissimilarity, K-
prototypes, and PAM with FAMD distance can select the correct number of clusters and obtain
good performance as well, while PAM with Gower distance and FMM cannot. FMM has poor
clustering performance even when given the correct number of clusters.

4.6.2 Special Case 2

Consider two variables where x; is continuous and x; is categorical with two levels A and B.
If we use variable x; only, we will detect one overall cluster. When x; is added, we can detect
3 clusters as shown in the bottom panel of Figure 4. Unfortunately, HyDaP will drop x; in
step one so that eventually we can only obtain 2 clusters using x,. In simulations, we set the
true cluster sizes as 50, 200, and 50 for lower values of x; and x, =A, middle values of x; and
x,=B, and higher values of x; and x,=A (corresponding to the bottom right panel of Figure 4),
respectively. We also generated 500 datasets as before.

Similar to what has been done in special case 1, we identified the number of clusters us-
ing several other methods. The results are that PAM with proposed HyDaP dissimilarity, K-
prototypes, and PAM with FAMD distance chose 3 as the optimal number of clusters. However,
PAM with Gower distance was unable to select an optimal number, and FMM selected 4, 5, or
6 with about equal occurrences in simulation runs.

We also assessed the clustering performance of all methods assuming that 3 is the optimal
number of clusters. All methods performed perfectly except FMM (ARI: 0.56 [0.44, 0.89]).
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In summary, the proposed HyDaP algorithm identifies fewer clusters in this case, and it is
unable to select the optimal number of clusters because of the criteria in step one. PAM with
proposed HyDaP dissimilarity, K-prototypes, and PAM with FAMD distance can select the
correct number of clusters and obtain good performance. However, PAM with Gower distance
and FMM are unable to select the optimal number of clusters. Similar to special case 1, FMM
has poor clustering performance even when given the correct number of clusters.

5 Real Data Application

We used the EHR data collected from the SENECA project to demonstrate the use of pro-
posed HyDaP algorithm for identifying phenotypes in patients with sepsis. The SENECA data
contains 20 189 sepsis encounters collected from 12 healthcare systems from year 2010 to 2012.
We aimed to identify several heterogeneous subgroups (phenotypes) among sepsis patients using
information collected at their emergency room presence and select the most important variables
that drive clustering results. After obtaining phenotypes, we planned to check whether they are
associated with different clinical endpoints. The list of the thirty variables that were used for
identifying sepsis phenotypes is shown in Supplementary Materials. Although we do not have
much information about the optimal number of clusters for the data set, our clinician colleagues
suggested that larger numbers of clusters were preferred.

Data structure identification: Natural clusters are rarely observed in data collected from
clinical settings. This is also true for the SENECA data. Its reachability plot (provided in online
Supplementary Materials) shows no natural cluster. After performing the consensus K-means for
all continuous variables, we obtained the results in Figure 5 suggesting that the optimal number
of clusters is four, and found that the SENECA data belongs to partitioned cluster structure.

Variable selection step: For partitioned cluster structure, we decided to keep all the continu-
ous variables. To determine if categorical variables gender and race were to be used for clustering,
we checked the Cramer’s V between each categorical variable and the cluster membership from
the consensus clustering and found that Cramer’s V for both were 0.05, a very small value.
Therefore, we dropped these categorical variables before proceeding to the final clustering step.

Clustering step: We took the consensus K-means results as our final clustering results.
In terms of variable importance, under partitioned cluster structure, all continuous variables
together contributed to the obtained partitions, yet no single variable showed dominant impact.

We obtained four clusters with relatively balanced sample sizes: 6 625, 5512, 5 385, and
2 667. After examining the characteristics of these clusters, our clinician colleagues found that
sepsis patients in Cluster 1 had fewer other health issues; Patients in Cluster 2 were those who
were older, had multi morbidities, and renal dysfunctions; Patients in Cluster 3 were those who
had more inflammations and pulmonary dysfunctions; And patients in Cluster 4 were those
who had more acidosis, liver, and cardiovascular dysfunctions. These findings indicate that the
4 clusters identified by the HyDaP algorithm are clinically heterogeneous. We then examined
the distribution of some important clinical endpoints across 4 clusters; Results are shown in the
top left plot of Figure 6. We found that Cluster 1 has the lowest proportions in adverse events
defined by those clinical endpoints while Cluster 2 has the second lowest ones. Cluster 4 has the
highest proportions. These clinical endpoints were not included in the clustering algorithm, so
the distinct distributions across clusters can serve as a “validation” that the clusters we identified
are clinically meaningful, as they show different clinical outcomes. The information obtained will
be useful in making prognosis for sepsis patients of different phenotypes.
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Figure 5: Consensus K-means optimal number of clusters selection.

We examined some other commonly used algorithms for clustering: PAM with Gower dis-
tance, K-prototypes, and FMM, assuming that four clusters were to be generated from the same
SENECA dataset by each algorithm. The resulting clusters were assessed by distinct clinical
characteristics and clinical endpoints. The results are summarized in Figure 6. For PAM with
Gower distance, we took a random sample of the whole SENECA data with size 5000 because
the computation time of this algorithm was very long. After further exploration we found that
gender dominated the clustering result as the proportion of male is 0.0% in Cluster 1, 2.7%
in Cluster 4, 99.4% in Cluster 2, and 99.8% in Cluster 3. Note that in our proposed HyDaP
algorithm gender was not relevant. For the K-prototypes, we found that the 4 clusters obtained
were not that distinct from each other in terms of the distributions of the clinical endpoints.
The 4 clusters obtained from the FMM appeared to be distinct from each other and were similar
to that obtained from using the HyDaP algorithm. However, Cluster 1 has larger proportion
of patients admitted to ICU or used mechanical ventilation and vasopressor as compared with
Cluster 2 but has lower mortality rate, which is difficult to explain. Moreover, FMM does not
provide information about variable importance.

We compared the above-mentioned three methods for application-specific optimal number
of clusters. We found that the optimal number of clusters was two for PAM with Gower distance,
two for K-prototypes, and three for FMM. We once again observed that the clustering results
from PAM with Gower distance were dominated by gender and the two clusters had quite similar
distributions of clinical endpoints. Similarly, the two clusters identified by K-prototypes were
not distinct in terms of clinical endpoints. The FMM identified three clusters with quite different
distributions of clinical endpoints whereas the HyDaP algorithm was able to identify one more
cluster with distinct clinical features. The results are provided in the online supplement.
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Figure 6: Clinical endpoints across 4 clusters identified by different methods.

6 Discussion

We proposed a novel clustering algorithm (HyDaP) to identify clusters and variable importance
in data of mixed variable types. By applying the method to the SENECA data for sepsis patients
in the emergency department, we identified four clinically meaningful disease phenotypes that are
highly associated with a number of clinical endpoints. All selected continuous demographic and
clinical covariates contributed significantly to the determination of the cluster membership with
no single feature dominated the process. These covariates also provided clinicians directions of
further research in treatments of sepsis. Note that other existing methods mentioned in the paper
identified none or fewer clusters. To identify disease phenotypes using the HyDaP algorithm, we
first analyzed and determined the data structure which was important in understanding the data
and interpreting the clustering results. We then found the cluster membership via our proposed
dissimilarity measure which can balance the contribution between continuous and categorical
variables. Through simulation studies, we showed that our proposed HyDaP algorithm is robust
to different data structures, and can outperform or be on a par with the commonly used methods.
If multiple variables that are clinically similar or related exist, we suggest that only one is kept
for clustering in order to avoid within-cluster correlations.

Our HyDaP algorithm has a few limitations. First, it inherits the limitations of the sparse
K-means algorithm; i.e., for data under the natural cluster structure, the sparse K-means pro-
cedure cannot correctly identify variables of high contributions if there is a continuous variable
containing many outliers or excessive zeros (a.k.a. zero-inflated). The limitation does not affect
the results of this study because SENECA data contains no such variable. Second, since the Hy-
DaP algorithm only uses continuous variables in identifying data structure and selecting number
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of clusters, it may detect fewer clusters if those clusters are divisible by categorical variables.
We have discussed this in detail in Section 4.6. This limitation is not a concern for SENECA
data because the two categorical variables in SENECA have low Cramer’s V values.

Clustering has emerged as an essential and popular technique for discovering patterns in
data. In dealing with the complexity of clinical data, we proposed the HyDaP algorithm to
address some of the issues found in the commonly used clustering algorithms, and successfully
applied it to identify sepsis phenotypes with distinct demographics, biomarkers, or clinical con-
ditions. The approach will help clinicians gain insight into different sepsis types and treatments
thereof and fine-tune precision medicine to reduce the mortality rate associated with sepsis.

Supplementary Material

The R codes and a brief tutorial of implementing the HyDaP are available at GitHub: https:
//github.com/gmailw1264648156/HyDaP.
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