
Journal of Data Science 5(2007), 535-554

Distribution-Free Regression:
Reinterpreting Design-Based Sampling

Gordon G. Bechtel
University of Florida and Florida Research Institute

Abstract: An individual in a finite population is represented by a random
variable whose expectation is linearly composed of explanatory variables and
a personal effect. This expectation locates her (his) random variable on a
scale when s(he) responds to a questionnaire item or physical instrument.
This formulation reinterprets design-based sampling, which represents an
individual as a constant waiting to be observed. Retaining constant expecta-
tions , however, along with fixed realizations of random variables, preserves
and strengthens design-based theory through the Horvitz-Thompson (1952)
theorem. This interpretation reaffirms the usual design-based regression es-
timates, whose normality is seen to be free of any assumptions about the
distribution of the outcome variable. It also formulates response error in a
way that renders a superpopulation, postulated by model-based sampling,
unnecessary. The value of distribution-free regression is illustrated with an
analysis of American presidential approval.

Key words: Arbitrarily distributed response errors, latent versus manifest
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1. A Paradigm Shift for Survey Sampling

Design-based sampling postulates an individual in a fixed observable state
that may be subjectively measured as a discrete rating, e.g. 0 1 2 3 4, or physically
measured, say, on a continuous blood pressure scale 0 ... 300mmHg. Thus, the
value recorded in a survey interview or clinical trial is regarded as a fixed number
in waiting. More realistically, however, an individual may be represented as a
random variable that is realized in response to a questionnaire item or physical
instrument.

The present paper favors this more plausible interpretation and extends Bech-
tel’s (2005) treatment of survey proportions to survey regressions of any discrete
or continuous dependent variable. The individual is posited here as a pair of
fixed parameters; namely, a mean and variance that (partially) determine an id-
iosyncratic probability distribution. Each mean is composed of individual-specific
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explanatory values along with an individual effect. Thus, a population of N indi-
viduals generates realizations of N non-identical distributions. Each individual
realization is a momentary numerical value governed by an idiosyncratic mean
and variance (and perhaps higher moments).

This approach brings the Horvitz-Thompson theorem to bear on a sample
(without replacement) of n realizations from a momentary population of N re-
alizations. It also enhances design-based regression, whose intercept and slopes
are normally distributed (over samples) for any idiosyncratic distributions (over
realizations) that prevail when humans respond to survey items and instruments.

Section 2 describes doubly bounded random variables, and section 3 lays out
a survey regression that “explains” their expectations. Section 4 demonstrates
the asymptotic normality of the estimated regression effects in the presence of
any distributions that underlie the survey responses. Section 5 completes the
present formulation with a treatment of variance estimation in this new context.

This paradigm is then applied in Section 6 to the important case of the popu-
lation mean, which is simply a regression intercept in the absence of explanatory
variables. Section 7 describes STATA commands for computing a distribution-
free regression, and Section 8 illustrates this computation with American polling
data. Section 9 sums up renewed design-based regression, noting its broad reach
across opinion polling, economic surveys, and clinical trials

2. Individuals as Random Variables

2.1 Stochastic response error

For each individual i = 1, . . . , N in a population let Yi be a random variable
such that

Yi = ηi + Ei

where Ei is a response error with

E(Ei) = 0,
Var(Ei) = σ2

i , for i = 1, 2, . . . , N.

The expectation and variance of the Ei are understood to be over realizations of
non-identically distributed random errors E1, . . . , EN .

In a survey the random variable Yi may take the discrete values 0 1 2 3 4 5 6
for the responses terrible, unhappy, mostly dissatisfied, mixed, mostly satisfied,
pleased, or delighted to a question about life quality (Andrews and Withey, 1976).
The assumption of equal spacing between response labels, used in this paper, is
venerable and ubiquitous (Galton, 1883; Thurstone, 1925; Likert, 1932; Coombs,
1964, pp. 211-212; Levy and Guttman, 1975; Clogg, 1979). Its robustness is
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demonstrated in Section 8, where one (binary) response step produces regression
slopes equivalent to those given by three equally spaced response steps.

In a clinical trial Yi may take any value in the interval 0 . . . 300mmHg on a
blood pressure scale. This continuous random variable, like the preceding discrete
one, generates a measurement Yi that departs from individual i’s true value ηi.
The expectation ηi denotes a personal location on the response scale, and the
standard deviation σi (over realizations) denotes a personal uncertainty. For
example, in a public opinion survey a low σi implies the crystallization of one’s
attitude. In a clinical trial a low σi denotes stability (or consistency) of one’s
blood pressure.

2.2 A linear characterization of ηi

Let ηp = [η1, . . . , ηN ]T be the vector of expectations in population p to be
“explained” by an N × (k + 1) population matrix Xp. The vector ηp and matrix
Xp define the finite population characteristic

β = (XT
p Xp)−1XT

p ηp (2.1)

which is the target parameter here. The function β(Xp,ηp) in (2.1) then defines

Ap = ηp − Xpβ, (2.2)

which is a population vector [α1, . . . , αN ]T of residual idiosyncratic effects on
[η1, . . . , ηN ]T over and above Xp. The ηi and αi are well-defined hidden variables
in present analysis.

In this setup, then, each individual i = 1, . . . , N in population p is represented
as

ηi = β0 + β1X1i + · · · + βkXki + αi, (2.3)

where ηi is i’s expected response to a survey instrument, X1i, . . . ,Xki are i’s values
of k variables that carry ηi through their effects β1, . . . , βk, αi is i’s residual effect
on ηi.

3. Sampling from One Realization

Assume a single realization {Y1, . . . , YN} of the N random variables in Sec-
tion 2.1. Observations Y1, . . . , Yn are now sampled (without replacement) from
{Y1, . . . , YN}. This implies that response errors E1, . . . , En are simultaneously
sampled (without replacement) from the one realization {E1, . . . , EN}. This
setup reinterprets conventional design-based sampling which treats {Y1, . . . , YN}
and Y1, . . . , Yn as constants rather than realizations of random variables.
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3.1 Weighting data in the presence of nonresponse

Missing data for all variables in Yi,X1i, . . . ,Xki, called unit nonresponse,
results in an absent survey protocol. For i = 1, . . . , N let πi be the probability
of i’s inclusion in a selected sample and φi be the probability of i’s survey par-
ticipation given s(he) has been drawn. Regarding i’s participation as the last
(self-selection) stage of sampling, the probability that s(he) is in the subsample
of n observed realizations is πiφi. In the sequel sample s denotes this subsample
of n survey participants, each with case weight wi = 1/(πiφi). This case weight
adjusts the sample design weight 1/πi upward by the factor 1/φi to compensate
for any population under-representation in the sample s of observed realizations
(Särndal and Lundström, 2005, pp. 43-44, 49-53).

The present reinterpretation of design-based sampling holds strictly under
true case weights wi = 1/(πiφi). The probability φi (unlike πi), however, is
not known and is usually estimated for each unit in sample s by “weighting
class” or “poststratification” adjustments (Lohr, 1999, pp. 264-272). If these n
estimates approximate the true participation probabilities φi, the formulas below
give nearly unbiased regression coefficients when the number of respondents n is
large. Nevertheless, Lohr (1999, p. 272) cautions that “Weights may improve
many of the estimates, but they rarely eliminate all nonresponse bias.”

Missing data for some variables in {Yi,X1i, . . . ,Xki : i ∈ s}, called item
nonresponse, gives an incomplete protocol for individual i in a survey regres-
sion. Various imputation procedures are available for filling in missing values in
incomplete protocols (Lohr, 1999, pp. 272-278). However, because the theory
here assumes that all responses have been realized in {Yi,X1i, . . . ,Xki : i ∈ s},
imputation adds bias to the regression formulas below . Lohr (1999, p. 277)
notes, “If the nonresponse is missing at random given the covariates used in the
imputation procedure, imputation substantially reduces the bias due to item non-
response”. Section 8.3 uses a regression imputation that avoids the loss of 29% of
the cases due to missing item data in an American national survey (StataCorp.,
2001, Volume 2, pp. 69-73; Särndal and Lundström, 2005, pp. 153-155, 158-161).

3.2 Estimating the target parameter β

Each element of the (k + 1) × (k + 1) matrix XT
p Xp is a population sum of

products, as is each element of the (k + 1)× 1 vector XT
p ηp (Lohr, 1999, p. 360).

Therefore, due to Horvitz and Thompson (1952), unbiased estimates of these
matrices are given by XT

s WsXs and XT
s Wsηs, where Xs is the known n×(k+1)

matrix of explanatory values in sample s, ηs = [η1, . . . , ηn]T is the unknown
respondent vector of individual expectations, Ws =diag(w1, w2, . . . , wn) is the
known n × n diagonal matrix of case weights.
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In a large sample s the unobserved Horvitz-Thompson (HT) estimator

b = (XT
s WsXs)−1XT

s Wsηs (3.1)

is consistent and almost unbiased for β, its unbiasedness being approximate be-
cause b is the product of estimators (Binder, 1983; Nathan, 1988, pp. 255-256;
Thompson, 1997, pp. 106-107; Valliant, Dorfman, and Royall, 1999, pp. 40-41;
Lohr, 1999, pp. 354-361). Similarily, for the realized (but unobserved) response
error Es = [E1, . . . , En]T in s the unobserved HT estimator

v = (XT
s WsXs)−1XT

s WsEs (3.2)

is consistent and almost unbiased for υ = (XT
pXp)−1XT

pEp. The vector Ep =
[E1, . . . , EN ]T consists of the realized response errors in p which are transformed
to υ. Also, as seen in (3.5) below, the error transform v in (3.2) delivers respon-
dent error Es to the manifest regression effects.

Finally, for the realized and observed measurement Ys = [Y1, . . . , Yn]T in s
the observed HT estimator

B = (XT
s WsXs)−1XT

s WsYs (3.3)

is consistent and almost unbiased for

θ = (XT
pXp)−1XT

pYp (3.4)

where Yp = [Y1, . . . , YN ]T consists of the realized measurements in p. Formula
(3.3) is the estimator of the conventional target (3.4) in design-based regression
(Frankel, 1971, pp.7-25; Lohr, 1999, pp. 359-361; StataCorp., 2001, Volume 4,
pp. 29-30; Chaudhuri and Stenger, 2005, pp. 264-265). However, in the present
reinterpretation B also, and more profoundly, estimates the new target β in (2.1).
Thus, given Ys as a subvector of the fixed vector Yp of realizations,

B = CsYs = Cs(ηs + Es) = Csηs + CsEs = b + v, (3.5)

where
Cs = (XT

s WsXs)−1XT
s Ws

Taking expectations over samples s of size n then gives

E(B) = E(b) + E(v) ≈ E(b) ≈ β (3.6)

because
E(v) ≈ υ = θ − β ≈ 0. (3.7)

Therefore, B is almost unbiased for β in large-sample surveys.
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Equations (2.1) through (3.7) have been developed from a single realization
of N arbitrary random variables without reference to any superpopulation with
an assumed probability density and covariance structure (cf. Skinner, Holt, and
Smith, 1989; Thompson, 1997; Valliant, Dorfman, and Royall, 1999; Lohr, 1999;
Binder and Roberts, 2003).

4. Normality of the Regression Effects

The expectation of (3.4) over realizations of the stochastic Yp is

E(θ) = (XT
pXp)−1XT

pE(Yp)

= (XT
pXp)−1XT

pηp = β. (4.1)

Because E(θj) = βj and Var(θj) → 0 as N → ∞ for j = 0, . . . ,k, the difference
θj −βj = vj is infinitesimal for a given realization of Yp . Fixing this momentary
realization {Y1, . . . , YN}, the resulting reals θ0, . . . , θk become the classic target
parameters of design-based regression. Therefore, a strict design-based argument
using the θj can be given for the normality over samples of each element Bj in
B. This provides a statistic for testing hypotheses about the target parameter βj

against the observed coefficient Bj .
First, given the realization {Y1, . . . , YN}, the coefficient θj (j = 0, . . . , k)

can be written as a smooth function of population totals of cross products in
{Yi, 1,X1i, . . . ,Xki : i ∈ p}. Then, from the subset {Yi, 1,X1i, . . . ,Xki : i ∈ s}
the estimate Bj can be written as the same function of HT estimators of these
population totals. The HT estimators are corresponding sample totals of cross
products with each term case weighted by wi . For example,

∑
i∈s wiX1iYi is an

HT estimator of
∑

i∈p X1iYi (cf. Lohr, 1999, pp. 352-360; Thompson, 1997, pp.
106-108).

Next, a Taylor series “linearization” of the error

ε(Bj ; θj) = Bj − θj ≈ εj,

along with asymptotic multivariate normality of the HT estimators, implies that
(Bj − θj)/

√
Var(εj) is asymptotically N(0, 1) (Lehmann, 1999, pp. 253-269, 309-

315; Lohr, 1999, pp. 290-293, 310, 352-360; Sen, 1988, pp. 313-328; Thompson,
1997, pp. 58-64, 106-111). The estimate V ar(εj) of Var(εj) is given in Section 5
and computed by software described in Section 7. Finally, due to the infinitesimal
difference between θj and βj , the statistic

t = (Bj − βj0)/
√

V ar(εj) (4.2)

may be used to test an hypothesis H : βj = βj0 about our target coefficient βj .
In applying (4.2) it is reassuring to recall that the asymptotic normality of Bj
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(over samples) does not depend on the distributions of Y1, . . . , YN (over realiza-
tions). Large-sample normality of the estimated intercept and slopes prevails in
the presence of any idiosyncratic distributions of survey responses.

5. Variance Estimation

Using “linearization” in design-based sampling, an estimate of the covariance
matrix of b in (3.1) is given by

V ar(b) = (XT
s WsXs)−1V ar[

∑
i∈s

wiX
T
i (ηi − XT

i b)](XT
s WsXs)−1, (5.1)

where wi is the case weight of respondent i, XT
i = [1,X1i, . . . ,Xki] is row i of Xs,

and ηi − XT
i b is a latent estimate of i’s effect αi = ηi − XT

i β. The unobserved
matrix V ar(b) in (5.1) is based on a strict application of design-based regression
(cf. Lohr, 1999, pp. 359-361; StataCorp., 2001, Volume 4, pp. 29-30). Thus a
vector ηs = [η1, . . . , ηn]T is sampled from a population vector ηp = [η1, . . . , ηN ]T

of constants, and b is computed from ηs using (3.1). It is not possible to observe
the core residual ηi − XT

i b in (5.1) because ηs is not observed. Hence V ar(b) is
a latent estimate.

Next, noting that Es = Ys − ηs is “predicted” by

XsB− Xsb = Xs(B − b) = Xsv,

the covariance matrix of v in (3.2) can be estimated like V ar(b). Replacing the
core residual in (5.1) by the “residual” Ei − XT

i v gives

V ar(v) = (XT
s WsXs)−1V ar[

∑
i∈s

wiX
T
i (Ei − XT

i v)](XT
s WsXs)−1. (5.2)

Because the Ei are not observed, V ar(v) is also a latent estimate.
Simulated response errors Ei demonstrate that the sum of the latent estimates

in (5.1) and (5.2) closely approximates

V ar(B) = (XT
s WsXs)−1V ar[

∑
i∈s

wiX
T
i (Yi − XT

i B)](XT
s WsXs)−1

≈ V ar(b) + V ar(v). (5.3)

The variance estimator in (5.3) is identical to that in conventional design-
based regression (Lohr, 1999, pp. 359-361; StataCorp., 2001, Volume 4, pp.
29-30). Its reinterpretation here is seen by writing i’s manifest residual as

Yi − XT
i B = ηi + Ei − XT

i (β + u + v)
= αi + Ei − XT

i (u + v), (5.4)
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where u = b − β and v = B − b. Equation (5.4) shows that i’s observed
residual equals her (his) actual residual in addition to a component containing
two estimation errors; namely, the departure of the latent estimate b from β and
the deviation of the manifest estimate B from b.

Finally, rewriting (5.4) as

Yi − XT
i B = ηi + Ei − XT

i (β + u + v)
= ηi + Ei − XT

i (b + v)
= (ηi − XT

i b) + (Ei − XT
i v) (5.5)

shows that this manifest residual also equals i’s residual in (5.1) plus her (his)
residual in (5.2). Thus V ar(b) expands to V ar(B) due to response error Ei and
estimation error v = B− b. In particular, the k + 1 diagonals of V ar(B), which
are the manifestly estimated variances of the observed B0, B1, . . . , Bk, are larger
than the k + 1 diagonals of V ar(b). These latter diagonals are the latently esti-
mated variances of the unobserved b0, b1, . . . , bk, which are generated by sampling
η1, . . . , ηn from the population {η1, . . . , ηN}.

6. The Important Case of the Mean

If the explanatory variables X1i, . . . ,Xki are deleted from (2.3), then Xp be-
comes the unit vector containing N ones. In this special case the target parameter
(2.1) is the population mean expectation

β0 = N−1
∑
i∈p

ηi

Correspondingly, substituting the unit vector of n ones for Xs in (3.1) gives the
latent estimate

b0 =
∑
i∈s

wiηi/
∑
i∈s

wi,

which is exactly unbiased for β0 because

E{
∑
i∈s

wiηi} =
∑
i∈p

ηi and

∑
i∈s

wi = N.

Next, substituting this unit vector for Xs in (3.2) and (3.3) gives

v0 = N−1
∑
i∈s

wiEi and

B0 =
∑
i∈s

wiYi/
∑
i∈s

wi.
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The latter formula for B0 is well-known in design-based sampling as the estimate
of

θ0 = N−1
∑
i∈p

Yi

(Lohr, 1999, p.198; StataCorp., 2001, Volume 4, p.70). This target θ0 is found
here by substituting the unit vector of N ones for Xp in (3.4). In conventional
design-based theory θ0 is the mean of fixed constants Y1, . . . , YN . Here it is the
mean of N realizations of random variables.

With the inclusion of response error in the present reinterpretation, B0 is also
seen to estimate β0, which is the population mean of expectations η1, . . . , ηN .
Thus using (3.5),

B0 = b0 + v0,

and taking expectations over samples s of size n and using (3.6) and (3.7),

E(B0) = E(b0) + E(v0) ≈ E(b0) = β0

because E(v0) ≈ 0. Therefore, in large samples B0 is almost unbiased for β0 .
Finally, substituting the unit vector for Xs in (5.3) gives an estimate of the

variance of B0:

V ar(B0) = V ar[
∑
i∈s

wi(Yi − B0)]/[
∑
i∈s

wi]2.

Writing i’s weighted residual wi(Yi − B0) as Ui, the estimated variance in the
numerator of V ar(B0) is computed as

V ar[
∑
i∈s

Ui] = n
∑
i∈s

(Ui − Ū)2/(n − 1),

where Ū =
∑

i∈s Ui/n (StataCorp., 2001, Volume 4, pp. 29-30, 70).
The formulas in this section show that the mean of a survey variable is the

intercept of a distribution-free regression whose slopes are set to zero. In this
special case too the intercept β0, its latent estimate b0, and its manifest estimate
B0 are defined without reference to a superpopulation.

7. Software for Distribution-Free Regression

The regression coefficients in (3.3), along with their standard errors from
(5.3), are easily computed with two STATA commands:

svyset pweight weight (7.1)
svyreg Y X1 . . . Xk (7.2)
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(StataCorp., 2001, Volume 4, pp.18-31). In (7.1) and (7.2) weight is a user-
supplied variable containing case weights, Y is the survey response variable, and
X1, . . . ,Xk are the predictors on which the regression is conditioned. This STATA
setup returns the regression effects B0, B1, . . . , Bk and their standard errors. As
shown by (5.4) and (5.5), the k + 1 standard errors delivered by (7.1) and (7.2)
reflect the effects of the response errors Ei on the variances of B0, B1, . . . , Bk .

8. Opinion polling: American Presidential Approval

8.1 The quaternary regression model

This section uses survey data that sharply departs from the (usually assumed)
continuity, normality, and homoscedasticity of the Yi . The breakdown for our
coded survey measure is

Yi = β0 + β1X1i + β2X2i + · · · + βkXki + αi + Ei

= XT
i β + αi + Ei

= ηi + Ei for i = 1, . . . , n, (8.1)

where Yi is i’s observed realization on the integers 0 1 2 3, X1i, . . . ,Xki are
i’s values on k explanatory variables, αi is i’s residual effect on her (his) ηi,
Ei = Yi − ηi is i’s unobserved realized error, and Yi − XT

i β = αi + Ei is i’s
regression residual. Equation (8.1) is estimated with B0, B1, . . . , Bk calculated
from (3.3). This manifestly estimates i’s regression residual as Yi −XT

i B, whose
latent components are given in (5.4) and (5.5).

8.2 The survey items and sample

The response values 0 1 2 3 taken by Yi in (8.1) code four response options
to the following item:

Overall, how would you rate President Bush’s performance on the job?
Poor Fair Good Excellent
(0) (1) (2) (3)

This item is administered monthly by Zogby International, who monitors the
perceived performance of the American President. Presidential approval is a
closely watched variable that is also tracked by the Gallup Organization, CBS
News/New York Times, ABC/Washington Post, NBC News/Wall Street Jour-
nal, and the American National Election Studies (Clarke, Stewart, and Rodgers,
2005).
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This non-normal, discrete, and heteroscedastic variable was regressed on nine
predictors also measured in the Zogby poll. Responses to these nine explanatory
items in Table 1 are also coded 0 1 2 3. Therefore, the nine regression slopes in
Tables 2 and 3 are comparable in magnitude. The overall opinion item in Table
1, along with the eight specific performance items, serve as mutual controls in
predicting presidential job approval.

The 1009 respondents to these items were selected by probability sampling and
contacted by computer-assisted telephone interviewing (CATI) between February
25 and 27, 2005. This was one month into the second presidential term of George
W. Bush, who was reelected in the autumn of 2004. Case weights for the 1009
respondents were obtained from a demographic profile geared to the American
population. These weights reflect region, political party, age, race, religion, and
gender in order to more accurately represent this population.

Table 1: Predictors of presidential performance

Item Response

Overall opinion of Very Somewhat Somewhat Very
George W. Bush unfavorable unfavorable favorable favorable

Jobs and the economy Poor Fair Good Excellent
The Iraq war Poor Fair Good Excellent
The environment Poor Fair Good Excellent
Foreign policy Poor Fair Good Excellent
Social security
and Medicare Poor Fair Good Excellent

Education Poor Fair Good Excellent
Taxes Poor Fair Good Excellent
The war on terrorism Poor Fair Good Excellent

Source: This table is adapted from an SPSS data file provided by Zogby Inter-
national.

8.3 Analysis and results

Missing rates for the predictors in Table 1 are 4% or less, except for the
environment, foreign policy, and taxes which have 6%, 12%, and 13% missing
responses. Because six of these rates are very low, and in order to preserve sample
size, a regression imputation was carried out for each of the nine predictors against
the other eight (cf. StataCorp., 2001, Volume 2, pp. 69-73).
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Table 2: Quaternary Regression of presidential job performance (R2 = .72)

Explanatory variable Slope t statistic Probability

Overall opinion of
George W. Bush

.282 7.44 .000

Performance on specific issues
Jobs and the economy .187 5.61 .000
The Iraq war .184 4.80 .000
The environment .165 4.99 .000
Foreign policy −.149 −3.98 .000
Social security
and Medicare

.128 3.19 .001

Education .107 2.80 .005
Taxes −.038 −1.05 .293
The war on terrorism .036 .95 .343

Source: The values in this table were obtained from the STATA commands
svyset and svyreg described in the text. This linear survey regression was
carried out on a STATA spreadsheet translated from an SPSS data file supplied
by Zogby International. The translation was done with STAT/TRANSFER
software obtained from Circle Systems, Inc.

Using the STATA commands in (7.1) and (7.2), 979 non-missing ratings of
George W. Bush’s job performance Y were regressed on the imputed predictors
X1, . . . ,X9 . The dependent variable Y was not imputed due to its low missing
rate of 3%. The nine estimated slopes B1, . . . , B9 are exhibited in Table 2, where
the predictors are ranked in the order of their effects on perceived job perfor-
mance. As already noted, these slopes are comparable in magnitude due to the
0 1 2 3 coding of X1, . . . ,X9.

The R2 of .72 indicates that almost three-quarters of the variance in pres-
idential job approval is explained by these nine predictors in the Zogby poll.
Overall favorability toward George W. Bush is the strongest predictor. Control-
ling for this general opinion, the quaternary regression also shows that jobs and
the economy and the Iraq war are the most specifically predictive of overall job
performance. (These two issues remain paramount for the American public at
the present writing.) The environment, foreign policy, social security and Medi-
care, and education show an evenly descending gradient in the strength of their
regression effects. Foreign policy, surprisingly, is negative in sign suggesting that
the American public looks unfavorably on presidential efforts in this direction.
Finally, Table 2 shows that in February 2005 taxes and the war on terrorism
were unimportant issues. This despite the administration’s emphasis on the im-
portance of lowering taxes and its asserted link between its wars on terrorism and
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Iraq.

Table 3: Binary Regression of presidential job performance (R2 = .62)

Explanatory variable Slope t statistic Probability

Overall opinion of
George W. Bush

.123 6.30 .000

Performance on specific issues
Jobs and the economy .079 4.38 .000
The Iraq war .078 3.80 .000
The environment .059 3.31 .001
Foreign policy −.060 −2.65 .008
Social security
and Medicare

.046 2.22 .026

Education .058 2.88 .004
Taxes −.003 −.14 .891
The war on terrorism .014 .65 .519

Source: The values in this table were obtained from the STATA commands
svyset and svyreg described in the text. This linear survey regression was
carried out on a STATA spreadsheet translated from an SPSS data file supplied
by Zogby International. The translation was done with STAT/TRANSFER
software obtained from Circle Systems, Inc.

8.4 A binary regression

Departures from continuity, normality and homoscedasticity for Yi in (8.1) are
now pressed to the most extreme case in which Yi is dichotomous on the integers
0 1. This alternative dependent variable was generated by recoding the Zogby
data as follows:

Overall, how would you rate President Bush’s performance on the job?
Poor Fair Good Excellent
Negative Positive

(0) (1)

The resulting 979 binary measures were also regressed on the nine imputed
predictors in Table 1 using the STATA commands in (7.1) and (7.2). The nine re-
gression slopes, exhibited in Table 3, are plotted on their quaternary counterparts
in Figure 1. The near perfect linearity (through the origin) of this plot demon-
strates that distribution-free regression delivers valid slopes, even in its most
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extreme case of one step from “negative” to “positive”. Conversely, as noted in
Section 2.1, the equivalence of these quaternary and binary slopes demonstrates
the robustness of assuming three equal steps from “poor” to “fair” to “good” to
“excellent”. Tables 2 and 3 show that quaternary slopes enjoy larger t statistics
and a greater R2 than binary slopes. Evidently quaternary regressions are to be
preferred, especially since they also offer an easy choice task to the respondent.

Figure 1: Binary versus quaternary slopes

9. The Reach of Renewed Design-based Regression

The present work replaces a population of constants with a population of
random variables. Both of these populations produce an observed sample of
numbers, but their generating processes are very different. In conventional design-
based sampling, fixed individual states are believed to be selected and observed
directly. In the present reinterpretation, stochastic response error generates N
individual random variables that are realized in a population. Subsequently, n of
these realizations are observed in a sample from this population. The status-quo
theory (unrealistically) regards these population and sample realizations as fixed
and immutable constants (cf. Lehmann, 1999, pp.115-116).
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9.1 Binary responses

Bechtel (2005) introduced the distinction between these two types of popu-
lations in binary applications. In this case a population of Bernoulli variates,
governed by personal probabilities, replaces a population of fixed 0’s and 1’s.
The sample proportion produced by survey solicitations estimates the population
mean of these probabilities, which are individual expectations of responding 0 or
1. In contrast, conventional design-based sampling interprets this same sample
proportion as the mean of a population of 0s and 1s that are fixed and noticeable
states.

The application in Section 8.4 extends Bechtel (2005) by analysing personal
probabilities ηi with equation (8.1). Here Ei is a binary response error causing ηi

to manifest as Yi = 0 or Yi = 1. Even with this most extreme departure of survey
data from continuity, normality, and homoscedasticity, normality (over samples)
of regression effects on personal probabilities is justified in Section 4.

9.2 Equal-step response scales

The regression of binary variates generalizes immediately to discrete random
variables that code ordered responses in public opinion polls. This type of survey
item solicits individual choice behavior (cf. Luce, 1959) over a set of options such
as poor, fair, good, and excellent in Section 8.2. There Ei is a quaternary response
error causing i’s expectation ηi to manifest as Yi = 0 1 2 or 3. In the case of
three response options, such as disagree, neutral, and agree, i’s expectation ηi is
continuous but her (his) potential realizations Yi are limited to the integers 0 1
or 2.

Discrete dependent variables may also arise from multiple-item scales in sur-
vey questionnaires. For example, the ternary coding 0 1 2 may be used for each
of three items that measure a subjective attribute. Summing these three item
scores generates a discrete random variable Yi whose expected value for individual
i is

ηi = ηi1 + ηi2 + ηi3.

The true value ηi is continuous, whereas Yi is restricted to the integers 0 1 2 3 4 5
or 6. The assumption in Section 2.1 that Yi = ηi +Ei, i.e. that a fixed individual
i’s observed scale score equals her (his) true score plus a random error, has been
used in psychological test theory by Lord and Novick (1968, pp. 27-38). The vari-
ance of Yi (over realizations) on the three-item scale in the present illustration
is

σ2
i = σ2

i1 + σ2
i2 + σ2

i3 + 2γi12 + 2γi13 + 2γi23,

where, for example, γi12 is the covariance of i’s responses to items 1 and 2. These
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inter-item covariances relax the implausible assumption of “local independence”
in item response theory, which requires that

γi12 = γi13 = γi23 = 0,

i.e. that individual i’s responses to successive questionnaire items be independent.
(Embretson and Reise, 2000).

Single and multiple-item scales have been a mainstay of psychological mea-
surement since Sir Francis Galton (1883) first introduced the rating of subjective
attributes. Coombs (1964, pp. 211-212) gave various reasons for the ubiquity
of rating scales, whose common use dates back to the early 1900s (Thurstone,
1925; Likert, 1932). In the 1970s survey ratings underlaid the measurement of
life quality. This effort was stimulated by Levy and Guttman (1975), Andrews
and Withey (1976), and Clogg’s (1979) latent class analysis of the 1975 General
Social Survey. In that decade the rating scale was also the vessel for consumer
satisfaction (Bechtel, 1977). Subsequently the quality-control revolution, stimu-
lated by the earlier work of W. Edwards Deming (Mann, 1994), led to worldwide
preoccupation with satisfaction. In the public and private sectors this concern
surfaced as “outcome evaluation”, where rated satisfaction is solicited in national
surveys and clinical trials.

9.3 Continuous scales

In contrast to discrete scales for measuring subjective variables, clinical and
economic measures tap physical properties such as blood pressure and wealth.
Here too status quo sampling theory unrealistically postulates fixed blood pres-
sures in the population, rather than realizations of individual random variables.
The alternative here samples these realizations which are continuous in mmHg
units. Each reading Yi departs from i’s true pressure ηi due to response error Ei.
Instead of being equally spaced these Yi, like their ηi, are continuous on the scale
0 . . . 300mmHg.

9.4 Explaining individual idiosyncrasies

In both its discrete and continuous applications reinterpreted design-based
theory represents respondent i as an idiosyncratic probability distribution. Her
(his) random variable Yi differs from its true value ηi due to a stochastic response
error Ei defined in Section 2.1. A continuous Yi, along with its mean ηi, can take
any value on the response scale. Discrete Yi, however, are restricted to equally
spaced response values. In Section 8.2 the values 0 1 2 3 code the well known
Zogby scale of poor, fair, good, or excellent presidential performance.
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When Y1, . . . , Yn are sampled from a population realization {Y1, . . . , YN}, the
regression estimate B in (3.3) is asymptotically normal over samples s and almost
unbiased for β in (2.1). The target β partially accounts for response expecta-
tions η1, . . . , ηN in a finite population of individuals. The variances of coefficients
B0, B1, . . . , Bk in B are estimated by the diagonals of the matrix in (5.3). These
same diagonals are used in conventional design-based theory, where Y1, . . . , Yn

are (implausibly) regarded as drawn from a population {Y1, . . . , YN} of human
constants. Alternatively, the renewed theory here interprets each Yi as a real-
ization of a random variable (partially) governed by i’s personal parameters ηi

and σ2
i defined in Section 2.1. This interpretation better justifies formulas (3.3)

and (5.3), long used to estimate survey regression coefficients and their standard
errors. It also strengthens the foundation of design-based theory by realistically
representing human populations as finite sets of unique individuals who are sub-
ject to idiosyncratic response errors. The errors considered here occur in the
absence of a hypothetical superpopulation with particular distribution and co-
variance structures. These arbitrarily distributed errors lend credibility to the
widely-used formulas of design-based regression theory.
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