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Abstract: Epidemiological cohort study that adopts a two-phase design
raises serious issue on how to treat a fairly large amount of missing val-
ues that are either Missing At Random (MAR) due to the study design
or potentially Missing Not At Random (MNAR) due to non-response and
loss to follow-up. Cognitive impairment (CI) is an evolving concept that
needs epidemiological characterization for its maturity. In this work, we
attempt to estimate the incidence rate CI by accounting for the aforemen-
tioned missing-data process. We consider baseline and first follow-up data
of 2191 African-Americans enrolled in a prospective epidemiological study
of dementia that adopted a two-phase sampling design. We developed a
multiple imputation procedure in the mixture model framework that can be
easily implemented in SAS. Sensitivity analysis is carried out to assess the
dependence of the estimates on specific model assumptions. It is shown that
African-Americans in the age of 65-75 have much higher incidence rate of
CI than younger or older elderly. In conclusion, multiple imputation pro-
vides a practical and general framework for the estimation of epidemiological
characteristics in two-phase sampling studies.

Key words: Cognitive impairment, incidence rate, MAR, MNAR, mixture-
model, multiple imputation.

1. Introduction

In longitudinal epidemiological studies where subjects enrolled are followed
at a series of time points (or data collection waves) for the examination of char-
acteristics related to the disease or condition of interest, missing values always
occur for various reasons. This phenomenon is more pronounced in dementia re-
lated cohort studies targeting on the elderly because the study subjects are more
susceptible to illness or death. It is well known that the consequence of miss-
ing values for analysis is potential bias in addition to reduced precision. Rubin
(Rubin, 1976) defined two general classes of processes that lead to the missing-
ness (missing-data processes), which lay out a theoretical framework to treat
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the problem of potential bias. Specifically, data are Missing At Random (MAR)
when missing-data process does not depend on unobserved values conditional on
the observed values. Data are Missing Not At Random (MNAR) when it is not
MAR. In other words, data are MNAR when the missing-data process depends
on the unobserved values conditional on observed data. It was shown that likeli-
hood based approach ignoring the missing-data process provides valid inference
for MAR data if the variables associated with the missing-data process is included
in the model; and it can be potentially biased for MNAR data (Little and Rubin,
1987). Therefore, for MNAR data, we need to include the missing-data process
in the analysis. The dilemma is that such analysis usually requires unverifiable
assumptions such that incorrectly postulated assumptions can also lead to bi-
ased inference. For this very reason, a sensitivity analysis is usually required to
examine the impact of various assumptions on the result of the analysis.

Cognitive impairment (CI) generally describes “a cognitive state intermediate
between normal and dementia”, clinically suggesting a risk or prodromal state for
Alzheimer’s disease (AD) and perhaps other dementias (Ganguli, Dodge, Shen
and DeKosky, 2004; Luis, Loewenstein, Acevedo, Barker and Duara, 2003). Re-
search in this condition has been an active area in the hope to seek effective early
diagnosis and intervention of AD and other dementias. From the clinical point
of view, CI represents the initial stage of disease progress that is characterized
by more severe deterioration of various cognitive functioning than normal aging.
In this perspective, subjects with CI provide psychiatrists and neurophysiologists
invaluable information that can be used for research in the onset of abnormal neu-
rodegeneration that ultimately results in dementia. CI is an evolving concept that
requires epidemiological characterization for its further development. Although
there have been an increasing number of epidemiological studies to investigate
this intermediate state, a sound epidemiological basis of CI is still not complete.
For instance, to our knowledge, very few analysis of the prevalence and incidence
of CI can be found in the literature (Ritchie, Artero and Touchon, 2001), though
several analyses of dementia have been published (Clayton, Spiegelhalter, Dunn
and Pickles, 1998; Gao and Hui, 2000; Gao, Hui, Hall and Hendrie, 2000). In this
study, we attempt to estimate the incidence rate of CI using data collected from
an African-American cohort in a community-based longitudinal study of demen-
tia for African and native Americans-the Indianapolis-Ibaden Dementia Project.
As described later, the Indianapolis-Ibaden Dementia Project used a two-phase
design, which is often applied to studies where a disease is rare and the diagnosis
of the disease is expensive. Such strategy has emerged as a cost-efficient way to
obtain population characteristics on a disease, which would otherwise take much
more time and resource to obtain. On the other hand, the design itself results in
a fairly large amount of missing values due to study design and factors beyond
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the control of the study designer.
Practical solutions are desirable for the estimation of epidemiological char-

acteristics of diseases (e.g. incidence) that can account for various missing-data
processes. With CI as an example, we undertake a multiple imputation technique
in the framework of mixture models to estimate the incidence rate. As shown in
later sections, this procedure can be readily performed using standard software
packages (e.g. SAS) and a sensitivity analysis is automatically carried out during
the imputation. Moreover, it provides a general framework for the estimation of
many other epidemiological quantities.

2. Multiple imputation

Multiple imputation (Rubin, 1987) was originally proposed as a general tech-
nique to handle missing values in complex surveys and has proven to be valuable
in many other settings as well (Rubin, 1996). Compared with single imputation,
it successfully adjusts the underestimation of the variability due to uncertainty
on missing values. Although most applications of multiple imputation are for
MAR data, it can also be used to handle MNAR data since a sensitivity analysis
is automatically embedded within the procedure (Rubin, 1987). The advantage
of this approach lies in the fact that it is easy to implement by most statistical
software packages (e.g., PROC MI and PROC MIANALYZE in SAS).

Essentially, multiple imputation repeatedly imputes the blanks in a data set
with some value to create multiple “completed” data sets. This procedure is set
up in a Bayesian framework and composed of three components:

i) Modeling task: a model assumption regarding the distribution of the complete
data (e.g. logistic regression model for binary data) and the prior distribution of
the model parameters;
ii) Estimation task: estimation of the posterior distribution of the parameters
given the observed values; iii) Imputation task: draw from the posterior distri-
bution of the parameter vector and then draw from the conditional distribution
of the unobserved values given the observed values and the parameter vector just
drawn.

Step iii) is repeated to create multiple completed data sets. The final estimate
is then obtained by combining estimate from each completed data set and vari-
ance is calculated to take into account both sampling variation and imputation
variation (Rubin, 1987). Specifically, if Q̂i is the point estimate from the ith com-
pleted data set with an estimated variance Ûi, i = 1, . . . ,m then the combined
estimate Q̄ is computed as
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Q̄ =
1
m

m∑
i=1

Q̂i (2.1)

Moreover, define the within-imputation variance Ū and between-imputation vari-
ance B as

Ū =
1
m

m∑
i=1

Ûi

B =
1

m − 1

m∑
i=1

(Q̂i − Q̄)2,

then an estimate of the variance of Q̄ can be computed as

T = V̂ ar(Q̄) = Ū +
(

1 +
1
m

)
B. (2.2)

3. The Indianapolis-Ibaden Dementia Project

The Indianapolis-Ibaden Dementia Project is an on-going longitudinal study
of dementia and Alzheimer’s disease in the elderly starting 1992 (Hendrie, Ogun-
niyi, Hall, Baiyewu, Unverzagt, Gureje, Gao, Evans, Ogunseyinde, Adeyinka,
Musick and Hui, 2001). The study participants are 2212 African Americans liv-
ing in Indianapolis (U.S.A.) and 2494 native Africans living in Ibaden (Nigeria).
All participants were 65 or older at enrollment. A population-based two-phase
survey (Pickles, Dunn and Vazquez-Barquero, 1995) was conducted at each data
collection wave for reasons of cost efficiency and high probability of selecting
diseased subjects. There was first an in-home screening using the Community
Screening Interview for Dementia (CSID) (Hall, Gao, Emsley, Ogunniyi, Mor-
gan and Hendrie, 2000) that categorizes each subject into 3 performance groups
(good, intermediate and poor) based on their screening scores. Then a full clini-
cal assessment was performed for a random subsample of participants from each
of the 3 groups with sampling rate 5%, 50% and 100%, respectively. In the clini-
cal assessment phase, subjects are diagnosed as normal, cognitive impaired (CI),
or demented. Then subjects diagnosed as normal will proceed to the CSID and
subjects diagnosed as CI will proceed directly to the clinical assessment phase
without taking the CSID in the next data collection wave. Subjects diagnosed as
dementia were excluded for further follow-up. The study is further complicated
by two other features: i) subjects might not respond to the clinical diagnosis
even if they were selected; ii) subjects may be lost to follow-up for various rea-
sons between data collection waves. We illustrate the two-phase design in Figure
1, where dashed lines indicate that unobserved diagnosis would occur.
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Figure 1: Schematic representation of the two-phase study (dashed lines indi-
cate where missing values of the clinical diagnosis occur). SNR: subjects who
were selected for Phase II (clinical diagnosis) but did not respond; SR: sub-
jects who were selected for Phase II and responded; NS: subjects who were not
selected for Phase II.

The primary aim of this paper is to estimate the incidence rate of CI by
accounting for the missing diagnosis. There are three types of missing values
involved: (a) subjects were not selected for the formal clinical diagnosis though
their CSID scores are observed; (b) subjects were selected for the formal clinical
diagnosis but did not respond; and (c) subjects were lost to follow-up so that
neither CSID score nor clinical diagnosis was observed. Item (a) is MAR because
the probability of being selected depends on the performance group, which is
observed. On the other hand, items (b) and (c) are potentially MNAR since the
missingness might depend on the unobserved disease status itself. In Section 4,
we describe a multiple imputation method to estimate the incidence rate of CI to
account for the missing values, using data collected from the African-Americans
at Indianapolis.

4. Estimation of CI Incidence Rate

We will use the baseline and the first follow-up data to estimate the incidence
rate of CI. We first provide some notation for the explanation of the imputation
procedure. For the sake of simplicity, we use the same notations for baseline
and first follow-up. First, let Y be the binary variable that records the diagnosis
result. Since we are interested in the estimation of incidence rate, we want to
identify normal subjects at baseline and those who have developed CI at first-
follow up among the normal subjects. Hence, for baseline, we define Y = 1 if
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normal and 0 otherwise; for first follow-up, we define Y = 1 if CI and 0 otherwise.
Next, we denote R as the response indicator for the formal diagnosis (phase II)
such that R = 1 implies response if selected and 0 otherwise. Finally, we use
X to denote the covariate vector which includes baseline age (continuous and
centered), age2, sex (1: female; 0: male) and highest grade finished (continuous
and centered), and CSID group (poor, intermediate or good).

We excluded 21 subjects who have missing values on education level, which
leads to 2191 subjects in our analysis whose X values are fully observed. We show
the missing-data pattern for the clinical diagnosis at baseline and first follow-up
in Table 1, in which each row represents a specific missing-data pattern. There-
fore, the largest group includes subjects who are not selected for diagnosis at
either wave (1121 subjects). The first row (165 subjects) includes subjects who
were diagnosed as CI or dementia so that their following diagnosis makes no con-
tribution to the estimation of incidence of CI. Therefore, we do not characterize
the missing-data pattern for their following diagnosis. However, they will still
contribute to the estimation of the prevalence of normal subjects at baseline,
which is used to estimate the risk set of CI.

Table 1: Missing-data pattern for clinical diagnosis at baseline and first follow-
up. SNR: subjects who were selected for Phase II (clinical diagnosis) but did
not respond; SR: subjects who were selected for Phase II and responded; NS:
subjects who were not selected for Phase II; LTF: loss to follow-up.

Baseline diagnosis First follow-up diagnosis #(%)

Diagnosed as CI or dementia at baseline 165 (7.4%)
SR SR 51 (2.3%)

SNR 4 (0.2%)
NS 102 (4.7%)
LTF 22 (1.0%)

SNR SR 13 (0.6%)
SNR 31 (1.4%)
NS 123 (5.6%)
LTF 81 (3.7%)

NS SR 157 (7.2%)
SNR 56 (2.6%)
NS 1121 (51.2%)
LTF 265 (12.1%)

Total 2191 (100%)
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To estimate the incidence rate, we need to impute the missing diagnosis values
for subjects in the “selected but did not respond” (SNR), “not selected” (NS)
and “loss to follow-up” (LTF) categories (Table 1). In doing so, we utilize a
mixture-model framework, which essentially divides the whole population into a
number of sub-populations based on the missing-data pattern and impute the
missing-values for each of them separately. In what follows, we describe how
to impute missing values at baseline and first follow-up sequentially in Section
4.1-4.3. We summarize the procedure and provide details of sensitivity analysis
in Section 4.4.
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Figure 2: Strategy for the imputation of missing diagnosis for SNR and NS
subjects. SNR: subjects who were selected for Phase II (clinical diagnosis) but
did not respond; SR: subjects who were selected for Phase II and responded;
NS: subjects who were not selected for Phase II.

4.1 Imputation of missing values at baseline

As seen from Table 1, there are two types of missing values for Y : those caused
by non-response (SNR) and those caused by non-selection (NS). Since selection is
based on the CSID group, which is part of the X vector, the NS sub-population
is simply a mixture of SNR and SR sub-populations for a given X value. In other
words, if we have a model to describe the diagnosis given X for SR ([Y |X, R = 1])
and SNR ([Y—X, R=0]), and a model to describe the response given X ([R|X]),
we can impute the missing diagnosis for NS based on the model

[Y |X] = [Y |X, R = 1][R = 1|X] + [Y |X, R = 0][R = 0|X]. (4.1)
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Here “[ ]” denote the probability distribution. Since we observe the diagnosis for
subjects in SR category, [Y |X, R = 1] can be estimated. Similarly, [R|X] can be
estimated based on data from subjects in SR and SNR categories. The major
difficulty is the estimation of [Y |X, R = 0], which is not possible since we do not
observe the Y. Hence, extra assumption is needed. One common strategy is to
estimate [Y |X, R = 1] first and “estimate” [Y |X, R = 0] by adjusting [Y |X, R =
1] based on subjective belief and previous experience. This is where the sensitivity
analysis is also required for the examination of the difference in results obtained
by different model assumptions. We illustrate the overall strategy in Figure 2.

We use logistic regression to model and estimate [Y |X, R = 1]:

Logit([Y = 1]) = Xβ1. (4.2)

If we assume a flat prior for the parameter vectorβ1, then the posterior distri-
bution approximately follows a normal distribution with mean β̂1 and variance-
covariance matrix v̂1, where β̂1 is the maximum likelihood estimate (MLE) of
β1 and v̂1 is the negative inverse of the second derivative of the log-likelihood
function evaluated at β̂1. Similarly, we also use a logistic regression to model
[R|X] :

Logit([R=1]) = Xλ (4.3)

Computation of the posterior distribution of λ is the same as β1.
For [Y |X, R = 0], we postulate a logistic model with parameter vector β2.

Since β2 is not estimable, we assume β̂2 = β̂1, except that the intercepts part
of the parameters are different. Hence, we assume that the data in SNR are
potentially MNAR and different assumptions regarding the intercept of β2 serve
as the sensitivity analysis. Since the intercept of the parameter vector controls
the base level probability of being normal at baseline, the sensitivity analysis is
set up in a way to tune this probability for subjects in SNR. Note that equal
intercepts for β̂1 and β̂2 imply MAR.

After we complete the estimation of the three models, [Y |X, R = 1], [Y |X, R =
0]) and [R|X], we can impute the Y values for subjects in SNR and NS as shown
in Figure 2.

4.2 Imputations of missing values in SNR and NS categories at first
follow-up

Obviously, we only need to impute the missing values of Y at the first follow-
up for subjects who were normal at baseline (either observed or imputed). For
subjects in SNR and NS categories at the first follow-up, the imputation proce-
dure is essentially the same as in the baseline except X is measured at the first
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follow-up. However, this time, the models need to be estimated based on sub-
jects who are normal at baseline. As seen in Table 1, only 51 subjects (second
row) are diagnosed as normal at baseline and respond to the diagnosis at the
first follow-up (these can be used to estimate [Y |X, R = 1]). Similarly, only 55
subjects (sum of second and third rows) are normal at baseline and selected for
diagnosis at the first follow-up (these can be used to estimate [R|X]). These num-
bers are rather small and provide limited information on the parameter vector.
Since non-response missingness contributes the major part to the missing values
of diagnosis at the first follow-up (over 80%), the estimation of incidence rate can
be very instable if the process of imputation is driven by variable values on these
55 people.

We decide to enrich the set of subjects used to estimate the models in Figure
2 for the first follow-up. Specifically, we select subjects who were either SNR or
SR at the first follow-up and have a high probability of being normal at baseline
based on the estimated models in section 4.1. Together with the original 55
subjects who were diagnosed as normal at baseline, these subjects serve as the
“estimation set” and are used to estimate [Y |X, R = 1] and [R|X].

4.3 Imputation of missing values due to loss to follow-up at the first
follow-up

For subjects who were lost to follow-up, we did not observe their Y,R and
part of the X values at the first follow-up, which makes it impossible to impute
the missing values by using models in Figure 2. The various reasons that lead
to the loss to follow-up might have different implications on the value of . For
instance, subjects who were too busy to be interviewed might be more likely to be
cognitive intact as compared with subjects who were too sick to be interviewed.
Hence, such missingness is potentially MNAR with heterogeneous missing-data
processes. Intuitively, separate models should be constructed for each of the
various processes. Nevertheless, sensitivity analysis is still needed due to the non-
ignorable nature of the missingness. Since loss to follow-up only contributes less
than 20% to the missing values of Y at the first follow-up, instead of constructing
models to distinguish the various reasons of missingness, we instead use a simple
method based on the observed Y values only, which allows direct sensitivity
analysis. We believe the range of uncertainty about the missing values in the
sensitivity analysis sufficiently covers what could have been for the unobserved
values. Specifically, we divide the age of the cohort into three categories: 65-74,
75-84 and 85 and over (85+). For respondents (at the first follow-up) in the
estimation set, we observe for each age group the number of subjects who were
CI at the first follow-up (nCI) and the number of subjects who were not CI at
the first follow-up (nNCI). The posterior distribution of the incidence rate of CI
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for these people is then a beta distribution with p = nCI + 1 and q = nNCI + 1
as the parameters, assuming a flat prior (uniform distribution) of the incidence
rate. Then we can use these distributions as our reference distributions to impute
the missing values of Y due to loss to follow-up. Potentially, the incidence rate
of subjects who were lost to follow-up is different from the incidence rates of the
respondents (at first follow-up) in the estimation set. To carry out the sensitivity
analysis, we will include for each age group an adjustment term s (s < q/p) so
that the posterior distribution of the incidence rate for subjects who were lost to
follow-up is a beta distribution with p + ps and q − ps as the parameters. Hence,
s basically is the percentage increase/decrease of the incidence rate as compared
with the reference incidence rates. The imputation procedure for each age group
is then composed of drawing incidence rate from the above beta distribution
and drawing from a Bernoulli distribution with probability of success being the
incidence rate just drawn for each subject in the age group.

4.4 Summary

In summary, the multiple imputation procedure for estimation of incidence
rate of CI proceeds as follows:

(i) Impute the missing values of Y for baseline as described in Section 4.1,

(ii) Impute the missing values of Y for the first follow-up as described in Section
4.2 and 4.3 for normal subjects at baseline (either observed or imputed)

(iii) Repeated (i) and (ii) m times to obtain m completed data sets.

We set m = 10 in the analysis. For each completed data set, the incidence rate
is calculated as the proportion of the normal subjects at baseline who develop
CI at the first follow-up. The final estimate and associated standard error are
calculated based on equations (1) and (2). For more detailed model assumption
and construction, see Supplemental Material.

There are two components in the sensitivity analysis to assess the impact
of various assumptions regarding the missingness on the results. The first one
is the relationship between the intercepts of β̂1 and β̂2 in Section 4.1, which
is used to tune the base level probability of being normal at baseline and base
level probability of being CI at the first follow-up for non-respondents as com-
pared with respondents. We consider three scenarios by alternating the values
of the intercept in β̂2: (a) at the base level, the probability of being normal
for non-respondents is 10% higher than that of the respondents and the proba-
bility of being CI among non-respondents is 20% less than that of the respon-
dents (non-respondents are healthier than respondents); (b) at the base level,
non-respondents and respondents have the same probabilities of being normal
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at baseline and CI at first follow-up (non-respondents are equally healthy as re-
spondents); and (c) at the base level, the probability of being normal among
non-respondents is 10% less than that of the respondents and the probability
of being CI among non-respondents is 20% higher than that of the respondents
(non-respondents are less healthy than respondents). The second component is
the quantity s in Section 4.2, which is used to tune the incidence of CI for sub-
jects who were lost to follow-up as compared with the respondents (at the first
follow-up) in the estimation set. We consider three values of s and set the same s
for each age group: −40% (those who were lost to follow-up has smaller incidence
rate), 0 (same incidence rate), 40% (those who were lost to follow-up has greater
incidence rate).

Table 2: Parameter estimates, standard errors (S.E.) and p-values (baseline)
for model (4.2) and (4.3)

Probability of being normal Probability of being
Parameters for respondents (model (4.2)) respondents (model (4.3))

estimate S.E. p estimate S.E. p

intercept 1.53 0.27 <0.0001 0.38 0.16 0.02
age −0.052 0.017 0.002 NS
age2 NS* NS
sex NS −0.47 0.18 0.009
grade 0.08 0.038 0.035 NS
intermediate# −0.78 0.36 0.031 NS
poor# −2.02 0.31 <0.0001 0.63 0.17 0.0003

∗: Not Significant, #: “good” group as the baseline

5. Results

We first fit the logistic models (4) and (5) to the baseline data to obtain the
MLEs of the parameters. The results are shown in Table 2 (parameters with p
values greater than 0.1 are not included in the models). Therefore, subjects with
younger age, higher education level or “good” CSID performance are more likely
to be normal at baseline; and males or subjects with “poor” CSID performance
are more likely to respond to the clinical diagnosis at baseline. To create the
estimation set in Section 4.2, in addition to the 55 subjects who were diagnosed
as normal at baseline and were SR or SNR at the first follow-up, we assume the
missing values due to non-response at baseline is MAR and select all subjects
who are either SNR or SR at the first follow-up and whose predicted probability
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of being normal at baseline is greater than 0.8. This leads to 161 subjects being
selected and the estimation set is then composed of 216 subjects (161+55 = 216).
Then models (4) and (5) are fitted to the data of these subjects and the results
are shown in Table 3. It appears that males, subjects with lower education level
or subjects with intermediate CSID performance are more likely to develop CI,
though the evidence of sex effect is not as strong as the other two. In addition,
subjects with median age range seem to have higher incidence rate than very
young or old elders since the coefficient for age2 is significantly less than 0.

Table 3: Parameter estimates, standard errors (S.E.) and p-values for model
(4.2) and (4.3) based on the 216 subjects in the estimation set (first follow-up)

Probability of being normal Probability of being
Parameters for respondents (model (4.2)) respondents (model (4.3))

estimate S.E. p estimate S.E. p

intercept NS* 1.28 0.16 <0.0001
age NS NS
age2 −0.023 0.011 0.039 NS
sex −0.90 0.54 0.096 NS
grade −0.15 0.041 0.0002 NS
intermediate# 1.79 0.59 0.0026 NS
poor# NS NS

∗: Not Significant, #: “good” group as the baseline

Then the sensitivity analysis is initiated to derive the models of Y for non-
respondents, non-selected and those lost to follow-up, followed by the multiple
imputation. The final incidence rates were calculated as the estimated rates
divided by the mean follow-up time for each age group (65-74: 1.77 years, 75-
84: 1.73 years, 85+: 1.65 years, Total: 1.74 years). In Table 4, we show the
estimated incidence rate of CI for each age group (65-74, 75-84, and 85+) under
different assumptions. Clearly, age group 75-84 has much higher incidence rate
than the other two groups, which is due to the quadratic term of age (Table
3). One possible explanation is that people who are normal at age 65-74 are less
susceptible to cognitive impairment as compared with age group 75-84 because of
younger age; and people who are normal at age 85 or older might be intrinsically
superior to the normal population at age 75-84 and therefore have lower incidence
rate. Since fewer people in the 85+ group are included in the study as compared
with the other two groups, the standard errors of the estimates for in this group
are much greater than the other two.
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Table 4: Incidence of CI (per 1000 person years) and standard errors under
various assumptions (216 subjects in estimation set)

(1) Age group (2) (3) (4)

40% increase 65-74 49 (10) 50 (12) 55 (8)
75-84 70 (16) 69 (15) 82 (12)
85+ 38 (35) 29 (16) 31 (21)
Total 55 (10) 55 (11) 62 (7)

equal 65-74 46 (11) 49 (10) 50 (9)
75-84 66 (12) 66 (13) 72 (12)
85+ 24 (24) 28 (24) 25 (18)
Total 51 (10) 53 (10) 55 (8)

40% decrease 65-74 44 (9) 44 (13) 47 (8)
75-84 56 (8) 52 (18) 63 (15)
85+ 20 (19) 14 (10) 16 (14)
Total 46 (7) 45 (13) 50 (7)

(1) Incidence rate of loss to follow-up as compared with the incidence rate of
respondents in the estimation set.
(2) Baseline: non-respondents 10% more likely to be normal. First follow-
up: non-respondents 20% less likely to be CI.
(3) Baseline: non-respondents equally likely to be normal. First follow-up:
non-respondents equally likely to be CI.
(4) Baseline: non-respondents 10% less likely to be normal. First follow-up:
non-respondents 20% more likely to be CI.

Most estimates of the incidence rate display some fluctuation under various
assumptions, though not substantial. The major difference occurs under age
group 85+ when the assumption regarding the incidence rate of those lost to
follow-up varies, which is due to the limited number of subjects in this group.
Note that 40% increase/decrease assumption is rather dramatic and we believe
it well covers the true difference in reality.

The extra 161 subjects included in the estimation set were selected based on
their predicted probability of being normal (greater than 0.8) at baseline. Hence,
it is possible that some of them were actually not normal at baseline. To assess
the sensitivity of the results to this assumption, we re-selected 85 subjects based
on a threshold of 0.84, leading to an estimation set of size 140. The results are
shown in Table 5, which is quite similar to Table 4.
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Table 5: Incidence of CI (per 1000 person years) and standard errors under
various assumptions (140 subjects in enriched set)

(1) Age group (2) (3) (4)

40% increase 65-74 52 (9) 49 (13) 57 (16)
75-84 85 (15) 82 (17) 87 (19)
85+ 31 (15) 31 (19) 29 (23)
Total 61 (9) 58 (12) 64 (15)

equal 65-74 46 (13) 44 (13) 50 (13)
75-84 67 (13) 70 (11) 76 (13)
85+ 24 (16) 20 (13) 20 (14)
Total 51 (12) 50 (10) 56 (11)

40% decrease 65-74 41 (12) 41 (13) 48 (12)
75-84 62 (13) 63 (17) 67 (12)
85+ 17 (11) 19 (14) 20 (14)
Total 46 (10) 46 (13) 52 (9)

(1) Incidence rate of loss to follow-up as compared with the incidence rate of
respondents in the estimation set.
(2) Baseline: non-respondents 10% more likely to be normal. First follow-
up: non-respondents 20% less likely to be CI.
(3) Baseline: non-respondents equally likely to be normal. First follow-up:
non-respondents equally likely to be CI.
(4) Baseline: non-respondents 10% less likely to be normal. First follow-up:
non-respondents 20% more likely to be CI.

6. Discussion

In this paper we applied multiple imputation approach to estimate the in-
cidence rate of CI using a data set that is subject to missingness due to study
design and factors beyond the control of the investigators. The uniqueness of
such data lies in the fact that some data are MAR whereas others are potentially
MNAR. Multiple imputation under the mixture modeling framework provides a
computationally-efficient and straight forward tool to handle such a problem. All
computation is conducted in SAS 9, in which PROC MIANALYZE is used to
combine estimates from each imputed data set.

Incidence rate of disease is a fundamental epidemiological quantity that can
only be estimated by large scale longitudinal studies. For rare disease like AD,
such studies can be very expensive since a large number of subjects need to be
recruited and followed. Although a two-phase design provides a cost-effective
alternative, the missing-data problem that arises poses another challenge for



Multiple-imputation to Estimate CI Incidence 517

valid statistical inference. This is because the non-response and loss to follow-up
severely reduce the available diagnosis information, which is already limited due
to the missing-values generated by the design. To our knowledge, this is the first
attempt to apply multiple imputation to a complex survey for the estimation
of incidence rate. It lays out a general strategy that can be potentially used in
any epidemiological studies with similar design for the estimation of a number
of quantities such as prevalence, incidence, life expectancy and so on. In addi-
tion, our data suggest that 10 imputations will have more than 90% efficiency as
compared with infinite number of imputations. Since the proposed approach can
be easily implemented in many standard software packages, it achieves analytical
simplicity at a small price of efficiency loss.

There are two issues we want to give extra explanation. First, as mentioned
previously in the paper, subjects who were lost to follow-up represent quite a
heterogeneous group, whose missing values are results of various missing-data
processes. Since these subjects only contribute 20% to the total missing values,
we collapse the different missing-data processes and treat them as one pattern in
the framework of mixture model for multiple imputation. We believe such a sim-
plification armed with sensitivity analysis is sufficient to assess the contribution
of these values to the estimation of CI incidence rate. Second, CI based on cur-
rent definition is not a stable condition like AD — people can go back to normal
from CI. This means that some incidence cases might already go back to normal
at the follow-up investigation. In addition, subjects who were normal at baseline
and demented at the first follow-up might already went through the CI stage in
the time interval. Nevertheless, they are not counted as incidence cases in the
analysis. Therefore, our data and method tend to yield under-estimates of the
incidence rate and estimates presented in Tables 4 and 5 should be understood
as the lower bound for the incidence rate of CI. Nevertheless, to our knowledge,
it provides the first model-based estimate of the incidence of CI. In addition, our
approach also provides a convenient tool to estimate the rate of turning back to
normal for CI subjects.
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