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Abstract: Linear regression models are often useful tools for exploring the
relationship between a response and a set of explanatory (predictor) vari-
ables. When both the observed response and the predictor variables are
contaminated/distorted by unknown functions of an observable confounder,
inferring the underlying relationship between the latent (unobserved) vari-
ables is more challenging. Recently, Şentürk and Müller (2005) proposed
the method of covariate-adjusted regression (CAR) analysis for this distorted
data setting. In this paper, we describe graphical techniques for assessing
departures from or violations of specific assumptions regarding the type and
form of the data distortion. The type of data distortion consists of multi-
plicative, additive or no-distortion. The form of the distortion encompasses
a class of general smooth distorting functions. However, common confound-
ing adjustment methods in regression analysis implicitly make distortion
assumptions, such as assuming additive or multiplicative linear distortions.
We illustrate graphical detection of departures from such assumptions on the
distortion. The graphical diagnostic techniques are illustrated with numeri-
cal and real data examples. The proposed graphical assessment of distortion
assumptions is feasible due to the CAR estimation method, which utilizes a
local regression technique to estimate a set of transformed distorting func-
tions (Şentürk and Nguyen, 2006).

Key words: Covariate-adjusted regression, distortion, graphical diagnostics,
local regression modeling, multiplicative effect, varying-coefficient models.
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1. Introduction

1.1 Examples of covariate adjustments in the health sciences

Regression modeling is a useful tool for exploring possible relationships be-
tween the primary response and explanatory variables of interest, especially for
observational studies. For situations where both the predictors and the response
in a regression model are not directly observed, but instead are observed after
being contaminated by unknown functions of a common confounder, straight-
forward applications of regression models may result in misleading conclusions.
Adjustment for the effect of the observed confounder is needed. Observable con-
founders, such as body mass index (BMI) and/or other measures of body config-
uration, are common in medical or health related studies because they are known
confounding variables that affect the primary variables of interest.

The method of covariate-adjusted regression (CAR), proposed by Şentürk
and Müller (2005), was designed to infer the underlying relationship between the
(latent) primary variables of interest under a general multiplicative data distor-
tion setting. Their method was originally motivated by data on inflammation
protein markers in haemodialysis patients. More specifically, a primary outcome
variable is elevated plasma fibrinogen level (Kaysen et al., 2003; Şentürk and
Müller, 2005). Fibrinogen is a protein found in blood plasma and it is a risk
factor for cardiovascular disease in haemodialysis patients. It is of interest to
examine the relationship between fibrinogen concentration and other predictors,
such as serum transferrin protein level. However, both primary variables of inter-
est, fibrinogen and transferrin protein levels, are known to depend on body mass
index (BMI), which exerts a confounding effect on the protein measurements.
A common approach to adjust for the confounders, like BMI, is to normalize
the primary variables of interest by simply dividing (by the confounder BMI).
Şentürk and Nguyen (2006) provide another example of adjustment for BMI in
exploring the underlying regression relationship between hypertensive variables
and glycosolated hemoglobin (a diagnostic measurement for diabetes).

Adjustment for confounding/distorting covariates is also common in the as-
sessment of environmental contaminants on human health risks from observa-
tional or epidemiological studies. For example, the relationship between exposure
to lipophilic agents, such as polychlorinated biphenyls (PCBs), and health out-
comes is often analyzed after adjustment for the distorting effect of serum lipid
(SL; Schisterman et al., 2005). The covariate adjustment here involves the ratio
PCB/SLρ, where the power ρ allows for a more general relationship between
PCB and SL.

To provide a more formal description of the above examples, in terms of the
multiplicative distortion framework considered here, some notations are needed.
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Denote the observed response, the p predictors and the confounder by Ỹ , {X̃1, . . .,
X̃p}, and U , respectively. The confounder U in the two examples above is BMI
and SL. The above examples further suggest that the distortion is believed to
be specific cases of multiplicative distortion of the following type:

Ỹ = ψ(U)Y, and X̃r = φr(U)Xr, r = 1, . . . , p, (1.1)

where Y and {X}p
r=1 are the underlying (latent) variables of interest. The

functions ψ(·), φ1(·), . . . , φp(·) are unknown (smooth) distorting functions. The
above distortions can induce an artificial relationship between the observed vari-
ables, Ỹ and {X̃r}, that may not be reflective of the true underlying regression
relationship between Y and {Xr} of interest. The underlying/latent regression
relationship is given by E(Y ) = γ0 +

∑p
r=1 γrXr, where {γr}p

r=0 are the param-
eters of interest. It is of interest to estimate this latent regression relationship
based on the available distorted data, namely Ỹ , X̃r, and the confounder U .

Note that the distortion framework (1.1) accommodates various forms of co-
variate adjustments. For instance, it allows for linear and/or possibly nonlinear
distortion on both Y and X1, . . . ,Xr. In the PCB example, the predictor dis-
tortion is assumed to be nonlinear: φ(U) = Uρ. In the inflammation protein
marker example, the distortion on the response and predictors are assumed to be
both linear: ψ(U) = φ(U) = U = BMI. This assumption of a common linear
distortion is used in practice for its simplicity.

We emphasize that the distortion framework (1.1) allows for the unknown con-
taminating functions. This is an appealing aspect, from a practical point of view.
This is because, in practice, the precise nature of the multiplicative relationships
between the confounder and the primary variables of interest is unknown. Lacking
this precise knowledge, the practice of dividing by the confounder U , or equiva-
lently assuming the specific linear distortion form, ψ(U) = U and φr(U) = U in
(1.1), imposes unnecessarily rigid constraints on the form of the data distortion.
Also, the assumption of a specific linear form under multiplicative distortion may
be incorrect. We suggest simple graphical techniques that can be used to check
if this specific assumption does not hold, as well as other assumptions regarding
the data distortion.

We point out here that CAR, an adjustment method under distortion frame-
work (1.1), does not restrict the form of the distorting functions, assuming only
that they are smooth functions. Using CAR, the regression relationship between
the unobserved variables, Y and {Xr}p

r=1, can be consistently estimated based
on the distorted data. In addition to allowing the forms of the distorting func-
tions to be more general, CAR also accommodates different types of distortion
models, namely: (a) multiplicative distortion (i.e. Ỹ = ψ(U)Y , X̃r = φr(U)X),
(b) additive distortion (i.e. Ỹ = ψ(U) + Y , X̃r = φr(U) + Xr), (c) and no-
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distortion (i.e. Ỹ = Y , X̃r = Xr). Under suitable identifiability conditions, given
in Section 2, the consistency of the CAR estimators holds under these three types
of distortion (Şentürk and Nguyen 2006; Şentürk and Müller 2005). Covariate-
adjusted regression was originally proposed in Şentürk and Müller (2005) using
a rough binning approach for estimation. A more refined estimation method to
reduce the variance, based on local regression modeling, was proposed in Şentürk
and Nguyen (2006). The asymptotic distributions of the CAR estimators were
established in Şentürk and Müller (2006).

In this work, we examine graphical approaches for assessing specific assump-
tions regarding the types and forms of the data distortion. For example, viola-
tions of the assumption of a specific linear distortion, ψ(U) = φr(U) = U , under
multiplicative distortion can be checked graphically. Another example is the as-
sumption that the above distortion only affects the predictors (i.e. ψ(U) = 1).
Also, in some cases, it is possible to fully characterize the types of distortion
(i.e. no-distortion, additive, or multiplicative) graphically. We describe graphi-
cal techniques to assess these and other related assumptions regarding the data
distortion in the context of covariate-adjusted regression.

Finally, we note here that the multiplicative distortion framework (1.1) has
similarities with measurement error modeling if the distortion by U is thought of
as an error affecting both the response and the predictors. However, a distinct
difference with the measurement error literature is that the “measurement” error
is a function of an observable confounder U . Although there is a vast literature on
additive measurement error modeling, the work on multiplicative measurement
error modeling is limited. Estimation procedures targeting the regression coef-
ficients under multiplicative measurement error in the predictor variables were
considered by, for example, Hwang (1986) and Iturria, Carroll and Firth (1999).
The case of multiplicative measurement errors in both the response and predictors
has not been considered previously to our knowledge.

1.2 An example of the distortion effects

To further introduce and illustrate the potential distortion effects on the un-
derlying regression relationship between Y and {Xr}p

r=1, we consider the following
numerical example. Suppose that the underlying (unobserved) regression model
of interest is

Y = 2 − 1.5X1 + 0.8X2 + e, (1.2)

where the predictors {X1,X2} are bivariate normal with means (2, 4), variances
(22, 1.82) and with correlation r(X1,X2) = 0.2. Also, assume that the error term
e is normally distributed with mean 0 and variance σ2 = 0.52. Suppose that
we have n = 500 observations from model (1.2). Then the simple ordinary least
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squares (OLS) estimators will target the underlying regression parameters of in-
terest: γT = (γ0, γ1, γ2) = (2,−1.5, 0.8). However, estimation of the relationship
between Y and {X1,X2} is more difficult when the available data has been con-
taminated. More precisely, suppose that the observed response and predictor
values for n observations are {Ỹi, (X̃i1, X̃i2)}n

i=1. The observed (available) data
is the result of multiplicative distortions on the response and the predictors:

Ỹi = ψ(Ui)Yi, X̃i1 = φ1(Ui)Xi1, and X̃i2 = φ2(Ui)Xi2,

where the unknown smooth distorting functions are ψ(Ui) ∝ U3
i , φ1(Ui) ∝

exp(Ui − 4) and φ2(Ui) ∝ (Ui + 4)2. For illustration, we take the confounder
Ui to be uniformly distributed on the interval [1, 6].

Figure 1: Example of distortion effects. Effects of the distorting functions
ψ(U) ∝ U3, φ1(U) ∝ exp(U − 4) and φ2(U) ∝ (U + 4)2 on Y , X1 and X2,
respectively. The solid lines are the (estimated) marginal relationship of (a)
Y on X1 and (b) Y on X2 obtained using ordinary least squares with unob-
served/undistorted data (black dots). The dotted lines are the OLS fits based
on the distorted data Ỹ , X̃1 and X̃2 (gray dots/green color in online version).
(c) The true underlying regression relationship between Y and {X1, X2} (black)
and the corresponding incorrect relationship estimated using OLS based on dis-
torted data (gray).
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Figures 1(a) and (b) show the distortion effects on the marginal relation of the
response Y to X1 and Y to X2, respectively. Displayed are the undistorted data
(black) and the available distorted data (gray/green in online version) along with
the OLS regression fits. Although there is a strong negative marginal relation-
ship between Y and X1, with r̂(X1, Y ) = −0.76, the strength of this relationship
is substantially diminished after the distortion by ψ(·) and φ1(·). This is also
reflected in the reduced estimated correlation based on the distorted observa-
tions: r̂(X̃1, Ỹ ) = −0.38. On the other hand, the distortion can also artificially
strengthen (or weaken) the observed relationship between the response and the
predictor(s), when in fact the strength of association is weak (or completely lack-
ing). For instance, in this example, the estimated sample correlation between Y
and X2 is r̂(X2, Y ) = 0.37. However, based on the distorted data, the estimated
correlation is higher (r̂(X̃2, Ỹ ) = 0.44; see 1(b)). The estimated relationship be-
tween the response and the predictors using OLS, if we were to have the original
data {Yi, (Xi1,Xi2)}n

i=1, is y = 1.955 − 1.510x1 + 0.815x2. This is close to the
true relationship given by (1.2), as expected. However, the estimated relationship
based on the distorted data {Ỹi, (X̃i1, X̃i2)}n

i=1 is y = −0.435−0.740x1 +1.104x2.
The overall distortion effect on the relationship between Y and {X1,X2} is il-
lustrated in Figure ??(c). CAR provides consistent estimation of the underlying
relationship based on the distorted data, as detailed in the next Section.

2. Estimation in covariate-adjusted regression

2.1 The basic CAR model

We formally describe the basic CAR model and review the estimation method
based on local (linear) regression (Şentürk and Nguyen, 2006). The regression pa-
rameters of interest are {γr}p

r=0 in the underlying (unobserved) regression model,

Yi = γ0 +
p∑

r=1

γrXir + ei, (2.1)

where Yi and {Xir}p
r=0 are the response and predictor values corresponding to

the ith subject, respectively. The error variable ei is assumed to have E(ei) = 0
and var(ei) = σ2. Parameter estimation is based on n distorted predictor and
response observations, {Ỹi, X̃i1, . . . , X̃ip}n

i=1, along with the confounding covariate
U , where

Ỹi = ψ(Ui)Yi, and X̃ir = φr(Ui)Xir, r = 1, . . . , p. (2.2)

Also, let Ỹ = (Ỹ1, . . . , Ỹn)T, X̃i = (X̃i1, . . . , X̃ip)T, and Xi = (Xi1, . . . ,Xip)T.
It is assumed that {(Xi, Ui, ei)}n

i=1 are independent and identically distributed,
where X, e and U are mutually independent for the underlying model (2.1) only.
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The problem of estimating the parameters, {γr}p
r=0, is identifiable under some

constraints on the unknown smooth distorting functions. A set of reasonable
constraints for ψ(·) and {φr(·)}p

r=1 is implied by the natural assumption that the
mean distorting effect should correspond to no distortion (Şentürk and Müller,
2005), i.e.

E{ψ(U)} = 1 and E{φr(U)} = 1. (2.3)

The multiplicative distortion model described collectively by (2.1)-(2.3) is referred
to as the covariate-adjusted regression (CAR) model. From the CAR model (2.1)-
(2.3), it appears that targeting the underlying regression parameters will first
require the difficult task of estimating the distorting functions directly. However,
a connection between the CAR models and varying coefficient models still allows
for consistent estimation of the underlying parameters without directly estimating
ψ(·) and φr(·). This relationship results from the following regression of Ỹ on
{X̃r}p

r=1 (Şentürk and Müller, 2005; 2006),

E(Ỹi|X̃T
i , Ui) = ψ(Ui)γ0 + ψ(Ui)

p∑
r=1

γr
φr(Ui)Xir

φr(Ui)

= β0(Ui) +
p∑

r=1

βr(Ui)X̃ir, (2.4)

where
β0(Ui) = γ0ψ(Ui), and βr(Ui) = γr

ψ(Ui)
φr(Ui)

. (2.5)

Therefore, a direct regression of the observed response on the set of observed
predictors leads to the following multiple varying coefficient model,

Ỹ = β0(Ui) + β1(Ui)X̃i1 + · · · + βp(Ui)X̃ip + εi, (2.6)

with εi ≡ ψ(Ui)ei. Cleveland et al. (1991) and Hastie and Tibshirani (1993)
proposed varying coefficient models to allow for more flexible regression model-
ing where the variable U changes the coefficient of X̃r through the unspecified
function βr(U). Consequently, because the varying coefficient model (2.6) is
completely observable, estimation techniques for varying coefficient models can
be utilized in the CAR model estimation. One efficient approach is based on
local regression modeling (Fan and Gijbels, 1996; Fan and Zhang, 1999; Cai, Fan
and Li, 2000), as proposed in Şentürk and Nguyen (2006) and Şentürk (2006).
We note that there is a vast literature on the theory and application of varying
coefficient models. The literature includes Chen and Tsay (1993) for nonlinear
time series, Chiang, Rice, and Wu (2001) for repeatedly measured response, and
Hoover et al. (1998), Wu and Chiang (2000), Wu and Yu (2002), and Şentürk
(2006) for longitudinal data.



478 D.V. Nguyen and and Damla Şentürk

Based on the relationships in (2.5) between the varying coefficient functions,
{βr(·)}p

r=0, and the distorting functions, {ψ(·), φr(·)}p
r=1, the CAR method pro-

vides consistent estimation of the underlying (unobserved) regression relationship
between Y and {Xr}p

r=1. Note that we can consider the {βr(·)} as a set of trans-
formed distorting functions. If we denote the estimators of the varying coefficient
functions as {β̂r(·)}p

r=0, then the CAR estimators of the underlying regression
parameters are

γ̂r =
1

X̃r

n∑
i=1

1
n
β̂r(Ui)X̃ir, r = 0, . . . , p (2.7)

where X̃r = n−1
∑n

i=1 X̃ir and Xi0 ≡ 1. (More details are given in Section 2.2
below.) The consistency of the estimators has been shown (Şentürk and Nguyen,
2006).

Furthermore, because of the relationships given by (2.5), we can directly use
the estimated varying coefficient functions, {β̂r(·)}p

r=0, for diagnosing various
types and forms of the distortion. We provide details of these graphical techniques
in Section 2.2 below. However, we first provide a brief summary of the local
linear regression estimator of βr(U), as they are the main quantities used for the
graphical assessment of violations of distortion assumptions.

2.2 CAR estimators based on local linear regression

Graphical assessment of specific assumptions regarding the forms and types
of data distortion can be implemented based on the relationships described by
(2.5). This involves the estimated varying coefficient functions {β̂r(·)}p

r=0. We use
a simple local linear regression estimator (Fan and Gijbels, 1996) for estimating
the varying coefficient functions as follows. For a given point u, the function βr(·)
can be approximated locally as

βr(U) ≈ br + cr(U − u), r = 0, 1, . . . , p,

for U in a neighborhood of u. For simplicity, we consider local linear fits, although
higher order polynomial approximation for βr(U) can also be used. However, our
previous experience suggests that local linear fits are sufficiently accurate for
CAR estimation purposes.

Explicit expressions for the local linear estimators of {βr(·)} are obtained by
minimizing the sum

n∑
i=1

[
Ỹi −

p∑
r=0

{br + cr(Ui − u)X̃ir}
]2

Kh(Ui − u),
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Figure 2: Local linear estimation. Given are the estimated (dashed
lines)and true (solid lines) varying coefficient functions, {β̂r(U)}2

r=0, for model
(2.6). The estimates are obtained using local linear regression (h = 0.5) based
on the distorted data. The specific varying coefficient functions are β0(U) ∝
U3, β1(U) ∝ U2/ exp(U − 4), and β2(U) ∝ U3/(U + 4)2, which are func-
tions/transformations of the smoothed distorting functions {ψ(U), φr(U), r =
1, 2}.

with respect to the coefficients {br, cr} and for a specified kernel function K(·)
with bandwidth h where Kh(·) = K(·/h)/h. The minimization problem is simply
a weighted least squares problem; hence, the estimators can be obtained explic-
itly. More precisely, let α̂ ≡ (̂b0, . . . , b̂p, ĉ0, . . . , ĉp)T. The local linear regression
estimates α̂ is given by

α̂ = Σ(u)X (u)TW(u)Ỹ,

where W(u) = diag{Kh(U1−u), . . . ,Kh(Un−u)}, Σ(u) = {X (u)TW(u)X (u)}−1,
and X (u) is the following n× 2(p + 1) data matrix

X (u) =

 1 X̃11 · · · X̃1p (U1 − u) (U1 − u)X̃11 · · · (U1 − u)X̃1p
...

...
. . .

...
...

...
. . .

...
1 X̃n1 · · · X̃np (Un − u) (Un − u)X̃n1 · · · (Un − u)X̃np

 .
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Then an estimate of β̂r(·) is β̂r(u) = b̂r and an estimate of the derivative of β̂r(·)
is β̂′r(u) = ĉr. The bandwidth h can be chosen, for instance, by generalized cross-
validation (Wahba, 1977; Craven and Wahba, 1979). We will elaborate on the
bandwidth choice subsequently.

To illustrate the distorting functions, {ψ(U), φr(U)}p
r=1, and the estimation

of the set of transformed distorting functions, {βr(U)}p
r=0, consider the exam-

ple introduced in Section 1.2. The distorting functions are ψ(U) = U3/ω1,
φ1(U) = exp(U − 4)/ω2, and φ2(U) = (U1)2/ω3. The constants (ω1, ω2, ω3) ≈
(64.81, 1.47, 58.32) are chosen so that the distorting functions satisfy the iden-
tifiability constraints in (2.3). The local linear regression estimators of the
corresponding varying coefficient functions, namely β0(U) = γ0ψ(U), β1(U) =
γ1{ψ(U)/φ1(U)} and β2(U) = γ2{ψ(U)/φ2(U)}, are displayed in Figure 2.

In the next section we describe how the estimated transformed distorting
functions, namely {β̂r(U)}, can be used to graphically check for violation of
specific assumptions about the form and type of data distortion. More precisely,
we identify the structures of βr(·) under various distortion assumptions. These
structures can then be used to check for violations of model assumptions related
to the distortion.

3. Graphical Assessment of Distortion Assumptions

3.1 Assessing violation of assumptions on the type of distortion

We first consider the assessment of specific assumptions regarding the type of
distortion, namely (1) multiplicative, (2) additive, or (3) no-distortion. Although
the CAR model, described in Section 2.1, can account for all three types of
distortion, it may be of interest in practice to examine the violation of specific
assumptions on the types of distortion. This may lead to the use of simpler
estimation procedures than CAR, such as ordinary least squares regression in
some special cases. Graphical assessment of distortion assumptions in the context
of CAR essentially makes use of the relationship between the unknown distorting
functions and their transformed versions, namely the varying coefficient functions
in (2.5).

For simplicity of exposition, let us first consider the case of a single predictor.
The multiple predictors case is similar and we will address it at the end of this
section. For a single predictor, the unobserved model is Yi = γ0+γ1Xi+ei. Under
the assumption of additive distortion, the available observations are {Ỹi, X̃i}n

i=1,
where Ỹi = ψ(Ui) + Yi and X̃i = φ(Ui) +Xi. Thus, from the underlying model,
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it follows that

Ỹi = γ0 + γ1X̃i + {ψ(Ui) − γ1φ(Ui)} + ei

= γ0 + γ1X̃i + ν(Ui) + ei, (3.1)

where ν(Ui) ≡ {ψ(Ui) − γ1φ(Ui)}. One may recognize the above model to be a
partly linear model (PLM; Heckman, 1986). Note that the PLM is a special case
of the varying coefficient model , Ỹi = β0(Ui)+β1(Ui)X̃i+ei (Section 2.1, equation
(2.6)), where β0(Ui) = ν(Ui) + γ0 and β1(Ui) = γ1. Because the resulting slope
varying coefficient function is constant under additive distortion, i.e. β1(Ui) = γ1,
departures from the assumption of additive distortion can be detected graphically
by examining β̂1(Ui) for constancy.

In fact, more information can be obtained from the graphical examination of
β̂1(Ui) regarding the type of distortion. More precisely, if β1(Ui) is not constant
then the distortion type is consistent with a multiplicative form where ψ(Ui) �=
φ(Ui). This follows directly from the relationships in (2.5) and resulting regression
equation under additive distortion given in (3.1) above.

In the special case where the distortion processes on the response and predic-
tor are the same, i.e. when ψ(Ui) = φ(Ui), then the constancy of β1(Ui) implies
that the distortion can be additive or multiplicative with ψ(Ui) = φ(Ui). More
precisely, under multiplicative distortion with ψ(Ui) = φ(Ui) ≡ ϕ(Ui), we have
the varying coefficient model Ỹi = β0(Ui) + β1(Ui)X̃i + εi with β0(Ui) = γ0ϕ(Ui)
and β1(Ui) = γ1.

Next, consider the case of no-distortion under the additive model. This is,
ψ(Ui) = φ(Ui) = 0. Consequently, we have ν(Ui) = 0, so both the intercept and
slope varying coefficient functions are constants: β0(Ui) = γ0 and β1(Ui) = γ1.
These varying coefficient functions are constants under multiplicative distortion
model (2.2) as well (i.e. ψ(Ui) = φ(Ui) = 1). Thus, we can graphically check
the estimated intercept and slope varying coefficient functions for no-distortion.
Again, this is feasible under additive or multiplicative distortion models. Clearly,
under the no-disortion case, measurements on U can be ignored.

For the case of multiple predictors in the context of additive distortion, it
follows similarly as in (3.1) that Ỹi = β0(Ui) +

∑p
r=1 γrX̃ir + ν(Ui) + ei, where

ν(Ui) = ψ(Ui) −
∑p

r=1 γrφr(Ui). Graphical examination of the estimated co-
efficient functions {β̂r(U)}p

r=1 for constancy, as in the single predictor case, is
sufficient for diagnosing departures from the additive distortion assumption.

The following key points summarize our discussion of the graphical assessment
of assumptions on the types of data distortion based on {β̂r(Ui)}.

• To detect departures from the additive distortion assumption, it is sufficient
to examine whether the estimated slope varying coefficient functions β̂r(Ui)
are constants.
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• If βr(Ui) �= constant, then the distortion is consistent with a multiplicative
form where ψ(Ui) �= φr(Ui).

• If βr(Ui) are constants, then the distortion can be (a) additive or (b) mul-
tiplicative with ψ(Ui) = φr(Ui).

• If β0(Ui) and βr(Ui) are all constants, then there is no distortion.

3.2 Assessing violations of assumptions on the form of distortion

We next consider the graphical assessment of some specific and common as-
sumptions regarding the functional form of the data distortion using the estimated
varying coefficient functions. Of specific interest is the assessment of whether the
distortion form is linear under additive distortion. Under linear additive distor-
tion, the distortion functions are ψ(Ui) = a+ bUi and φ(Ui) = c+ dUi. Thus, we
have that

Ỹi = α0 + α1Ui + γ1X̃i + ei (3.2)

where the parameters are α0 = γ0 + (a− cγ1) and α1 = b− dγ1. As in (3.1), the
resulting regression in (3.2) can be viewed as a varying coefficient model: Ỹi =
β0(Ui)+β1(Ui)X̃i +ei. As before, the slope varying coefficient β1(Ui) is constant.
Additionally, the corresponding intercept varying coefficient function is linear:
β0(Ui) = α0 + α1Ui. Thus, departures from or violations of the assumption of a
linear additive distortion can be graphically examined by checking for constancy
of β̂1(Ui) and linearity of β̂0(Ui). Note that the resulting model (3.2) implies that
inclusion of the observable confounder U into a direct regression model based
on the distorted data (response and predictor data) will provide a consistent
estimate of the underlying slope coefficient γ1. Therefore, the commonly used
adjustment method of including U as an additional predictor is justified only
under an additive linear distortion assumption.

Next, we consider two common assumptions on the functional form of the
distortion under multiplicative distortion. The first case is linear regression mod-
els based on the adjusted response and predictor variables obtained via divi-
sion by the confounder U . Such models implicitly assume that the distortion
type is multiplicative and that the form is a special case of the linear distor-
tion: ψ(U) = φ(U) ∝ U . One example, provided in the Introduction Section,
involves dividing the observed response P̃FL (plasma fibrinogen level) and the
predictor S̃TP (serum transferrin protein) by the confounder U = BMI. The
adjusted variables assumed to be free of the effect of BMI are P̃FL/BMI and
S̃TP/BMI. This assumption would hold if, in fact, the distortion on the pro-
tein markers are of the form ψ(U) = φ(U) ∝ U . Other examples that make
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this assumption are neurological studies comparing volumetric structures, such
as amygdala and hippocampal volumes, obtained from magnetic resonance imag-
ing (MRI). (See, for example, Pinter et al. (2001).) Typically, to compare across
patients, the volumetric structures are normalized via division by total cranial
volume (TCV = U) or total brain volume (TBV = U). This practice of division
by the confounder implicitly assumes the special linear-multiplicative distortion
of the forms ψ(U) ∝ U and φ(U) ∝ U . Thus, it follows directly from the re-
lationships given by (2.5) that βr(U) ∝ γr for r ≥ 1 and β0(U) ∝ γ0U . Thus,
violations of the assumption of this specific multiplicative linear distortion can
be detected by checking for departures from linearity of β0(U) and the constancy
of βr(U).
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Figure 3: Linear distortion on the predictor. Displayed are the estimated
varying coefficient functions, {β̂r(U)}2

r=0 (with h = 2.0), for the case of special
linear distortion on the predictor variable only: ψ(U) = 1, φr(U) ∝ U . These
distorting functions correspond to β0(U) = γ0 and βr(U) ∝ U−1 under the
covariate-adjusted regression model. The light thin (green for online version)
cures are reference curves cU−1 for various constants of proportionality c. De-
parture from the distortion assumption occurs when the the estimated curve
(dashed) deviates from a reference curve.
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Figure 4: Linear distortion on both response and predictor. Special
linear distortion on both the response and predictors, namely ψ(U) = φr(U) ∝
U , leads to constant functions for βr(U), r ≥ 1. The dashed lines are the
corresponding local linear estimates with h = 2.0. Note that when the same
nonlinear distortion affects both the response and the predictors (i.e., ψ(U) =
φr(U) ≡ ϕ(U) and nonlinear), only the plot of β0(U) (top left) will change,
reflecting this nonlinearity of ϕ(U). The remaining plots of βr(U), r > 0, are
still constants.

The second common assumption used in practice is the assumption that
φ(U) ∝ U and ψ(U) = 1. That is, the special linear distortion is believed
to only affect the predictor variable and the response variable is unaffected by
the confounder. In this case violation of this assumption can be determined
by checking for departures from β0(U) = constant and β1(U) ∝ U−1. Fig-
ure 3 illustrates the estimated varying coefficient functions, β̂0(U) and β̂r(U),
r = 1, 2, for this case and Figure 4 illustrates the above case where the dis-
torting functions are proportional to the confounder U : ψ(U) = φr(U) ∝ U .
In both cases, the data were generated using the same parameters as the moti-
vating example introduced earlier in Section 1.2 (and also summarized in Fig-
ure 1). The examples displayed in Figures 3 and 4 use the local linear regres-
sion estimation procedure described in Section 2.2. As discussed earlier, the
local linear regression modeling require selection of the bandwidth h. We used
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generalized cross-validation (Wahba, 1977; Craven and Wahba, 1979) as previ-
ously described in Şentürk and Nguyen (2006) with the the Epanechnikov kernel,
K(t) = 0.75(1 − t)2+. That is, the bandwidth h is chosen to minimize the gen-

eralized cross-validation criterion: n−1||Ỹ − ̂̃Y||2/[1 − n−1tr(V)]2, where V is

the “hat” matrix in ̂̃Y = ( ̂̃
Y 1, . . . ,

̂̃
Y n)T = VỸ and ̂̃

Y i =
∑p

r=0 β̂r(Ui)X̃ir (with
X̃i0 ≡ 1).

Finally, we note that under the multiplicative distortion, if the distortion
processes on the response and predictors are the same, whether they are linear or
nonlinear, then βr(U) (r ≥ 1) are constants. Consequently, plotting the estimated
intercept function β̂0(U) provides the functional form of the common distortion,
since β0(U) = γ0ϕ(U), where ϕ(U) ≡ ψ(U) = φr(U).

3.3 A data example: Graphical assessment of the distorting effect of
BMI on cholesterol and blood pressure measurements

In this data example, we examine the distortion effect of body mass index
(BMI) on the regression relationship between serum cholesterol (SC; mg/100ml)
and blood pressure (BP) measurements, namely systolic BP (SBP; mm Hg) and
diastolic BP (DBP; mm Hg). The underlying relationship under exploration
is SC = γ0 + γ1SBP + γ2DBP + e. It is postulated that both response and
predictor measurements may be affected by each individual’s body mass index,
resulting in the observed data {S̃Ci, S̃BP i, D̃BP i}n

i=1 and {BMIi}n
i=1 are the

measurements on the confounder for n individuals. As we discussed above, the
distortion effect may be null (i.e., ψ(BMI) = φr(BMI) = 1 for multiplicative
distortion or ψ(BMI) = φr(BMI) = 0 for additive distortion), additive, or
multiplicative. We explore some of these possibilities as well as the functional
form of the distortion.

The data that will be examined here was obtained from the National Health
and Nutrition Survey (NHANES) and is available from Hosmer and Lemeshow
(2000). For illustration, we analyzed a random subset of n = 1000 observa-
tions (from 7,344 complete observations available for male subjects). Based
on the observed data, we fit the varying coefficient model S̃Ci = β0(BMIi) +
β1(BMIi)S̃BP i1+β2(BMIi)D̃BP i2+ε(BMIi), i = 1, . . . , 1000. Using covariate-
adjusted regression (Section ??), the estimated relationship between serum choles-
terol and blood pressure, adjusted for the effect of BMI, is given by ŜC =
131.21 + 0.3199SBP + 0.3904DBP , i.e. with γ̂ = (131.21, 0.3199, 0.3904)T . The
standard error estimates for the γ̂r can be obtained using the bootstrap, as de-
scribed in Şentürk and Nguyen (2006). Based on 300 bootstrap samples, the
standard error estimates corresponding to γ̂ are (13.196, 0.0996, 0.1486). Not
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surprisingly, predicted SC is positively related to BP , after adjusting for BMI.
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Figure 5: Distortion in cholesterol-blood pressure data example. Dis-
played are the estimate of the distorting function β0(U) ∝ ψ(U) on choles-
terol (top left) and the transformed distortion functions (varying coefficient
functions) corresponding to SBP (right) and DBP (below), with bandwidth
h = 8.0.

To explore the type and form of the distortion effects of BMI on SC, SBP ,
and DBP , we examine the corresponding estimated varying coefficient functions
β̂r(BMI), r = 0, 1, 2. Figure 5 displays these estimated functions, obtained using
a bandwidth of h = 8 from generalized cross-validation. Because the estimated
varying coefficient functions corresponding to S̃BP and D̃BP (i.e. β̂1(BMI)
and β̂2(BMI)) are not both constants, the hypothesis of no-distortion effects of
BMI on both the response and predictors is not supported. In fact, the esti-
mated varying coefficient functions vary significantly with BMI, so the hypothe-
sis/assumption that the distortion is additive is also not tenable. The estimated
functions suggest a multiplicative distortion where ψ(BMI) �= φr(BMI). Un-
der multiplicative distortion, the assumption of no-distortion on the response
variable only (i.e. ψ(BMI) = 1) and the assumption of a special linear distor-
tion (i.e. ψ(BMI) = φr(BMI) ∝ BMI) are not compatible with the observed
data. Furthermore, because β0(BMI) ∝ ψ(BMI), the form of the distortion on



Distortion Diagnostics for Covariate-adjusted Regression 487

the response variable, serum cholesterol, can be inferred directly from the plot
of β̂0(BMI). As can be seen from Figure ?? the distortion on the response is
approximately linear and increasing in BMI in a wide range of observed body
mass index (mean BMI ± 1.5 standard deviation: 19.6-33.4). Thus, increas-
ing BMI has an overall monotonic increasing and linear-multiplicative effect on
serum cholesterol in this range. The estimated varying coefficient functions cor-
responding to S̃BP and D̃BP suggest that the distortion structure on SBP and
DBP are more complex and may not be strictly linear throughout the range of
BMI.

Finally, we note that the assumption of a common distortion form that affects
both the response and predictors, whether linear or nonlinear, is not compatible
with the observed data. That is, the distortion effect of BMI on cholesterol
appears to be different than the distortion on blood pressure measurements (SBP
and DBP).

4. Discussion

The covariate-adjusted regression model framework (2.1)-(2.3) provides a con-
sistent estimation procedure that is automatically adaptive to the case of no-
distortion as well as linear and nonlinear additive or multiplicative distortion.
Using this consistent estimation procedure as a basis, we have proposed simple
graphical techniques to further assess violations of specific assumptions on the
forms and types of distortion under the CAR model framework. In real data ap-
plications, various simpler adjustment methods are commonly used under specific
assumptions on the distortion form and type. Diagnostic techniques presented
here can be used to better understand the distortion structures and facilitate in-
terpretation, as well as checking for departures from specific model assumptions.
As illustrated with various examples, the approach is feasible due the simple local
linear regression estimation of the varying coefficient functions.

When estimating the varying coefficient functions, βr(U), selection of the
bandwidth h can be chosen using the generalized cross-validation (GCV) cri-
terion, for example. Generally, the choice of h is a trade-off between bias and
variance. For estimation of the underlying parameters γr, GCV works well to bal-
ance the bias and variance (Şentürk and Nguyen, 2006). However, even with the
use of GCV, the estimates β̂r(U) may not be sufficiently smooth for the graphical
uses described here. There are various reasons for this, one of which is the differ-
ent degrees of smoothness of the functions βr(U), r = 0, . . . , p. For the graphical
diagnostic purposes, one can reduce the variability by oversmoothing, using the
chosen GCV choice of h as an initial guideline for the amount of oversmooth-
ing. For the data example above, oversmoothing gave similar results as the GCV
choice of h = 8.0. However, our experience with other data sets suggests that this
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“oversmoothing” after GCV selection may work better for graphical assessment
of distortion assumptions. Alternatively, one can also use a two-step local linear
approach to estimate the varying coefficient functions (Fan and Zhang, 1999),
where the initial (first-step) estimate of βr(U) is obtained by undersmoothing
so that the bias is small. A re-estimation (re-smoothing) is done in the second
step. Such an approach can be incorporated into the CAR estimation method
and graphical diagnosis of assumptions on the data distortion.
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Şentürk, D., and Nguyen, D. V. (2006). Estimation in covariate-adjusted regression.
Computational statistics and Data Analysis, in-press.
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