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Abstract

Climate change is widely recognized as one of the most challenging, urgent and complex problem
facing humanity. There are rising interests in understanding and quantifying climate changing.
We analyze the climate trend in Canada using Canadian monthly surface air temperature, which
is longitudinal data in nature with long time span. Analysis of such data is challenging due
to the complexity of modeling and associated computation burdens. In this paper, we divide
this type of longitudinal data into time blocks, conduct multivariate regression and utilize a
vine copula model to account for the dependence among the multivariate error terms. This
vine copula model allows separate specification of within-block and between-block dependence
structure and has great flexibility of modeling complex association structures. To release the
computational burden and concentrate on the structure of interest, we construct composite
likelihood functions, which leave the connecting structure between time blocks unspecified. We
discuss different estimation procedures and issues regarding model selection and prediction. We
explore the prediction performance of our vine copula model by extensive simulation studies.
An analysis of the Canada climate dataset is provided.
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1 Introduction
Climate change is widely recognized as one of the most challenging, urgent and complex problem
facing humanity (OBrien, 2010). Its impacts are global in scope and unprecedented in scale, its
fingerprints are across natural systems (Parmesan and Yohe, 2003), and it exposes human-being
under the risks of but not limited to global food security (Wheeler and von Braun, 2013) and
forced immigration (Hugo, 2013). Climate change features global warming since the mid-20th
century and it is believed that human activities are responsible for the observed waming (Stocker
et al., 2013). Therefore, it is increasingly important to understand and quantify climate change
and the magnitude and the speed of global warming, which provides a basis for policy makers
and financial institutions to respond smartly (Lim et al., 2004; Fang et al., 2019).

The objective of our research is to develop a new statistical model to better characterize
and forecast the trend of temperature changing. The temperature data is usually longitudinal
in nature and features long time span, which imposes challenges to conventional method for
longitudinal data analysis.

Longitudinal data analysis, which studies the change of repeated observations of the same
subjects over time, has long been a thriving topic in statistical research. There have been sev-
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eral approaches in this field, including multivariate analysis, linear and generalized linear mixed
and mixture models, generalized estimating equations, structural equation models, transition
methods, Bayesian methods and so on. A large body of books, papers and reviews discussed
and summarized the aforementioned topics, and for comprehensive summaries of different ap-
proaches, we can refer to Diggle et al. (2002), Hedeker and Gibbons (2006), Fitzmaurice et al.
(2009), Verbeke and Molenberghs (2009), Verbeke et al. (2014), for example. Analysis of intensive
longitudinal data (Walls and Schafer, 2006) is also an emerging area.

Copula (Joe, 1997; Nelsen, 2007) is a powerful and flexible tool to model the multivariate
distribution and it allows separate models for marginal distribution and dependence structure.
To cope with the restrictions of multivariate copula, a graphical model, vine copula, (Joe, 1997;
Bedford and Cooke, 2002; Aas et al., 2009) was developed based on density decomposition and
bivariate copulas and it can model the multivariate distribution flexibly.

The applications of copulas and vine copulas to longitudinal data are limited. Lambert and
Vandenhende (2002) introduced copula to model multivariate non-normal longitudinal data.
Smith et al. (2010) considered using D-Vine copula to model the serial dependence in time
series, but they focused more on the estimation of the vine copulas and did not include covariates
into the model. Ruscone and Osmetti (2016) and Smith (2015) consider using copula and vine
copula to model the multivariate time series. Killiches and Czado (2018) considered modeling
the unbalanced longitudinal data with a homogeneous vine copula model. Each bivariate copula
in the vine structure is assumed to have the form of Gaussian copula, so that the model can
be used to make prediction easily. Other studies include Frees and Wang (2006); Shen and
Weissfeld (2006); Domma et al. (2009); Madsen and Fang (2011); Shi and Yang (2018). Most of
these references considered a short time span, or used model selection methods to create sparse
vine structure, such as Smith et al. (2010).

In this paper, we use vine copula model to describe the dependence structure of longitudi-
nal data with possible long time span by dividing data into different time blocks. The temporal
length of the longitudinal data determines the number of parameters in regular vine model,
which increases quadratically as time length increases. Thus directly using vine copula model
for the longitudinal data on a large time-span will introduce a large number of parameters and
hence create difficulties for parameter estimation. As a result, we consider using the compos-
ite likelihood (Lindsay, 1988; Varin, 2008; Varin et al., 2011; Lindsay et al., 2011; Yi, 2017)
to simplify the likelihood function and concentrate on the parameters of primary interest. We
also compare different estimation procedures, simultaneous estimation and two-stage estima-
tion, to further facilitate the fast inference of our proposed model. Moreover, we find out in
simulation studies that the composite likelihood provides robustness against misspecification on
structure linking between time blocks, accurate selection of the (conditional) bivariate copulas
and convenient structure for prediction. The proposed model yields promising prediction results
in terms of subject and time extrapolations in both simulation studies and analysis of Canadian
temperature data.

The rest of the paper is organized as follows. In Section 2, we discuss the model formulation,
including marginal model and association model. In Section 3, we describe how to estimate the
parameters, and in Section 4, we give the procedure for copula selection and prediction based
on our model. In Section 5 and 6, simulation studies and analysis of Canadian temperature data
are provided, respectively.
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2 Model Formulation
Suppose that we are interested in modeling longitudinal data collected over a long period of
time, for instance, monthly temperature data over years. Such data usually features with natural
period (e.g., years) or exhibits a periodic pattern. To feature the periodic patterns, we examine
the data by periods, called time blocks in what follows, and let b denote the number of time
points in each time blocks. Suppose that we have a time blocks, let m = ab denote the total
number of observed occasions, and n subjects are observed at the m occasions. For longitudinal
data with no periodic pattern, we set a = 1. Let Yikl be the continuous response for the ith
subject at the lth time point in the kth time block, and let xikl be the associated covariate
matrices. Let Yik = (Yik1, . . . , Yikb)

T be the vector of responses of the ith subject in the kth time
block, and let Yi = (Y T

i1, . . . , Y
T
ia)

T be the full vector of responses of subject i for i = 1, . . . , n and
k = 1, . . . , a. Let lower case letters yik and yi denote the realizations of of Yik and Yi , respectively,
and let xik and xi denote the corresponding covariates.

We now introduce the joint model for Yi which shows the dependence of Yi on xi . It is difficult
to directly specify a meaningful joint distribution of Yi , given xi , to facilitate the dependence
structure of the components of Yi . To come up with an interpretable joint model for Yi given xi ,
we take two steps. In the first step, we characterize the dependence of Yi on xi via regression
models, which contain random errors; in the second step, we further delineate the dependence
structures of the components of Yi by characterizing the dependence structures of the random
errors resulted from the first step.

Specifically, for i = 1, . . . , n, k = 1, . . . , a, and l = 1, . . . , b, we assume that

Yikl = μikl + εikl, (1)

where μikl = E(Yikl|xikl), and εikl is the associated random error term. We further assume that

gl(μikl) = xT
iklβl,

where gl(·) is the link function and βl is the parameter vector associated with time l. Let
β = (βT

1 , . . . , βT
b )T. For i = 1, . . . , n and k = 1, . . . , a, we let εik = (εik1, . . . , εikb)

T and εi =
(εT

i1, . . . , ε
T
ia)

T.
To reflect that responses from the same subject across time points are possibly associated,

in the next step, we focus on characterizing the dependence structure among the components of
εi using vine copula models.

2.1 Joint Distribution of εi

2.1.1 Marginal Distribution of εi

For l = 1, . . . , b, we assume that marginally, the random errors {εikl : i = 1, . . . , n; k = 1, . . . , a}
share the same distribution function and let Fl(·;ωl) and fl(·;ωl), respectively, denote their
cumulative distribution function (CDF) and the density function indexed by parameter vector
ωl, i.e.,

εikl ∼ Fl(εikl;ωl),

for i = 1, . . . , n; k = 1, . . . , a. Let ω = (ωT
1 , . . . , ωT

b )T and let η = (βT, ωT)T denote the parameter
vector associated with the marginal distribution of the Yikl.
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Figure 1: A R-Vine structure for 4 time blocks and 4 time points within each block.

2.1.2 Dependence Structure of εi

We employ vine copula models (Bedford and Cooke, 2002) to delineate the dependence structures
of the random vector εi . In particular, D-Vine and Canonical vine (C-Vine) are two useful cases
of regular vine copula models, which pertain to pair-copula constructions (Aas et al., 2009).
A brief review of the idea of vine copula model is provided in Section 1 of the supplementary
materials.

As longitudinal data has a natural temporal order, Smith et al. (2010) and Killiches and
Czado (2018) both considered modeling the longitudinal data using a D-Vine structure un-
der different settings. However, in the second or higher levels of D-Vine trees, describing the
stochastic behavior of the current responses needs to be conditional on future responses, which
creates difficulties in interpreting the copula parameters. A good property of C-Vine is that if
a non-dominating variable (i.e., a variable that is not the root of the tree T1) is dropped, the
remaining variables still follow a C-Vine structure. As a result, we adopt a C-Vine to model the
dependence structure between different time points within a block to avoid this problem and
yield an interpretable model.

Specifically, we propose to use an R-Vine structure (Bedford and Cooke, 2002) to model
the dependence structures within εi . Within each time block, the dependence structure between
time points is assumed to be identical and modeled with a C-Vine structure; and different time
blocks are connected by a D-Vine structure. To illustrate this idea, in Figure 1 we present an
example with 4 time blocks and 4 time points within each block, where T1, T2 and T3 represent
the first three levels of trees in the vine copula model, and the nodes in the (blue) boxes represent
the error terms of time points within time blocks, which have a C-Vine model structure.
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We first introduce necessary notation before we give the mathematical form of the R-Vine
structure. For c = 1, . . . , a and d = 2, . . . , b + 1, let Gicd = {εicl : l = 1, . . . , d − 1}. For
s, g ∈ {1, . . . , a} and h, r ∈ {1, . . . , b}, let

Dish,igr =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{ g−1⋃
c=s+1

Gic(b+1)

}
∪ Gish ∪ Gigr , if s < g − 1;

Gish ∪ Gigr , if s = g − 1;
Gish, if s = g and h < r.

Furthermore, for a random variable Z1, a random vector Z2 = (Z21, . . . , Z2d1)
T and a random

vector Z3 = (Z31, . . . , Z3d2)
T with 1 + d1 + d2 = m, let FZ1Z2Z3(z1, z2, z3) denote the joint CDF of

Z1,Z2 and Z3, with fZ1Z2Z3 as the corresponding density function. As a result, the joint density
of the random vector Z2 is derived as fZ2(z2) = ∫ ∫

fZ1Z2Z3(z1, z2, z3)dz1dz3, and the conditional
CDF of Z1, given Z2 is

FZ1|Z2(z1|z2) = ∂d1FZ1Z2(z1, z2)

∂z21 . . . ∂z2d1

1

fZ2(z2)
, (2)

where FZ1Z2(z1, z2) = lim
z3→∞FZ1Z2Z3(z1, z2, z3) is the joint CDF of Z1 and Z2.

For εikh and εikr with h < r in the same time block k, let ckh,kr (·, ·) denote the conditional
copula density function between εikh and εikr , given the conditioning set Dikh,ikr , where the first
and second arguments in the copula density are given by uikh|Dikh,ikr

= Fεikh|Dikh,ikr
(εikh|Dikh,ikr )

and uikr|Dikh,ikr
= Fεikr |Dikh,ikr

(εikr |Dikh,ikr ) respectively, and Fεikh|Dikh,ikr
and Fεikr |Dikh,ikr

are the con-
ditional CDFs of εikh and εikr , given the conditioning set Dikh,ikr respectively, which are ob-
tained from (2) by letting Z1 = εikh or εikr , Z2 = Dikh,ikr and Z3 = εi\{εikh ∪ Dikh,ikr} or
εi\{εikr ∪ Dikh,ikr}.

For εish and εigr in different time block with s < g, let csh,gr (·, ·) denotes the conditional
copula density function between εish and εigr , given the conditioning set Dish,igr , where the first
and second arguments in the copula density are given by uish|Dish,igr

= Fεish|Dish,igr
(εish|Dish,igr )

and uigr|Dish,igr
= Fεigr |Dish,igr

(εigr |Dish,igr ) respectively, and Fεish|Dish,igr
and Fεigr |Dish,igr

are the con-
ditional CDFs of εish and εigr , given the conditioning set Dish,igr respectively, which are ob-
tained from (2) by letting Z1 = εish or εigr , Z2 = Dish,igr and Z3 = εi\{εish ∪ Dish,igr} or
εi\{εigr ∪ Dish,igr}.

Combining the marginal model and the dependence structures specified, we write the joint
density function of εi as

f (εi;ω, θ, ψ) =
{

a∏
k=1

b∏
l=1

fl(εikl;ωl)

}

×
{

a∏
k=1

b−1∏
h=1

b∏
r=h+1

ckh,kr (uikh|Dikh,ikr
, uikr|Dikh,ikr

; θkh,kr )

}

×
{ a−1∏

s=1

a∏
g=s+1

b∏
h=1

b∏
r=1

csh,gr (uish|Dish,igr
, uigr|Dish,igr

;ψsh,gr)

}
, (3)

where the product in the first set of brackets corresponds to the marginal densities of the εikl,
the product in the second set of brackets corresponds to the C-Vine structure within time blocks
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indexed by the dependence parameter vector θ = {θkh,kr : k = 1, . . . , a;h = 1, . . . , b − 1; r =
(h+ 1), . . . , b}, and the product in the third set of brackets corresponds to the D-Vine structure
connecting the time blocks indexed by the dependence parameter vector ψ = {ψsh,gr : s =
1, . . . , a−1; g = s+1, . . . , a;h, r = 1, . . . , b}. Let ϑ = (θT, ψT)T denote the vector of dependence
parameters.

2.2 Joint Model of the Responses Yi

Applying the one-to-one transformation to the random variables defined by (1) in combination
with the joint density function (3) for εi , we obtain the joint distribution of responses Yi , given
by

f (yi; η, ϑ) =
a∏

k=1

b∏
l=1

fl(yikl − g−1(xT
iklβl);ωl)

×
a∏

k=1

b−1∏
h=1

b∏
r=h+1

ckh,kr (uikh|Dikh,ikr
, uikr|Dikh,ikr

; θkh,kr )

×
a−1∏
s=1

a∏
g=s+1

b∏
h=1

b∏
r=1

csh,gr (uish|Dish,igr
, uigr|Dish,igr

;ψsh,gr), (4)

where uish|Dish,igr
= Fεish|Dish,igr

(εish|Dish,igr ) in (3) is now expressed as

uish|Dsh,gr
= Fεish|Dish,igr

(
yish − g−1(xT

ishβh)|Dish,igr

)

by using (1).

3 Estimation Methods
Given the availability of the joint distribution of Yi , it is natural to use the likelihood method
to estimate the marginal parameters η and dependence parameters ϑ simultaneously. Let

Li(η, ϑ) = f (yi11, . . . , yiab; η, ϑ)

be the likelihood contributed from subject i. Then the full likelihood is

L(η, ϑ) =
n∏

i=1

Li(η, ϑ). (5)

Maximizing the likelihood function (5) with respect to η and ϑ gives the maximum likelihood
estimator of (ηT, ϑT)T, denoted by (η̂T, ϑ̂T)T.

The likelihood method is conceptually easy to implement, and it yields consistent and ef-
ficient estimators if the associated models are correctly specified. However, this method has
two major limitations. Computationally, when the dimension of Yi increases, the number of pa-
rameters in the likelihood function will increase dramatically, and thus, using the likelihood for
estimation can be computationally prohibitive. Theoretically, the validity of the maximum likeli-
hood estimator hinges on the correctness of all the assumed models. Any model misspecification
may result in biased results.
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To overcome the weakness of the likelihood method, we explore the alternative estimation
methods using the composite likelihood framework (Lindsay, 1988; Varin, 2008; Varin et al., 2011;
Lindsay et al., 2011; Yi, 2017), of which a review is provided in Section 2 of the supplementary
materials and the details of formulation are elaborated in following sections.

3.1 Simultaneous Estimation with Composite Likelihood
Rather than working with the joint distribution of Yi in (4), we ignore the dependence structure
between time blocks. This ignorance is driven by the fact that the parameters ψ , which consists
mostly of the parameters in high levels of R-Vine tree, are not of primary interest (Brechmann
et al., 2012).

Let φ = (ηT, θT)T, we consider the joint distribution of Yik for subject i within the kth time
block

f (yik1, . . . , yikb;φ) =
b∏

l=1

fl(yikl − g−1
l (xT

iklβl);ωl)

×
b−1∏
h=1

b∏
r=h+1

ckh,kr (uikh|Dkh,kr
, uikr|Dikh,ikr

; θkh,kr ), (6)

for i = 1, . . . , n and k = 1, . . . , a. This distribution form is simpler than (4).
Next, we formulate a composite likelihood for the parameters φ using (6) and ignoring the

dependence among different time blocks:

Lc(φ) =
n∏

i=1

Lci(φ), (7)

where Lci(φ) = ∏a
k=1 f (yik1, . . . , yikb;φ). Maximizing (7) with respect to φ yields a composite

maximum likelihood estimator of φ, denoted by φ̂CS.
Under regularity conditions (Varin, 2008; Varin et al., 2011; Yi, 2017), φ̂CS is a consistent

estimator of φ, and
√

n(φ̂CS − φ) has the asymptotic normal distribution with mean zero and
covariance matrix HCS(φ)J−1

CS (φ)HCSφ), where

HCS(φ) = E

(
∂2Lci(φ)

∂φ∂φT

)
, and JCS(φ) = E

[(
∂Lci(φ)

∂φ

)(
∂Lci(φ)

∂φ

)T]
.

Matrices HCS(φ) and JCS(φ) can be estimated by their empirical counterparts with φ̂cs plugged
in, when using the asymptotic distribution to conduct inference about φ.

3.2 Two-Stage Estimation with Composite Likelihood
To further ease computation burdens, we treat η and θ differently when employing (7) for
estimation. Specifically, we estimate η using a simpler formulation than (7) and then use (7) to
estimate θ only.

We now describe a two-stage estimation procedure. In the first stage, for l = 1, . . . , b, we
construct the marginal likelihood functions for marginal parameters ηl = (βT

l , ωT
l )T,

Ll(ηl) =
n∏

i=1

Lil(ηl), (8)
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where Lil(ηl) = ∏a
k=1 fl

(
yikl − g−1

l (xT
iklβl);ωl

)
. Maximizing (8) with respect to ηl yields an esti-

mator of ηl, denoted by η̂l, for l = 1, . . . , b. Let η̂CT = (η̂T
1 , . . . , η̂T

b )T. In the second stage, we
plug η̂CT into (7) and obtain Lc(η̂CT, θ). Then maximizing Lc(η̂CT, θ) with respect to θ provides
an estimator of θ , denoted by θ̂CT. Let φ̂CT = (η̂T

CT, θ̂T
CT)T.

Let Qi(η) = ∂
∂η

∑b
l=1 log[Lil(ηl)] and Ui(η, θ) = ∂

∂θ
log[Lci(η, θ)]. Define

HCT(φ) = E

(
∂

∂ηT Qi(η) 0
∂

∂ηT Ui(η, θ) ∂

∂θT Ui(η, θ)

)
and JCT(φ) = E[Wi(η, θ)Wi(η, θ)T],

where Wi(η, θ) = (Qi(η)T, Ui(θ, η)T)T. Similarly, by the results of Varin (2008); Varin et al.
(2011) and Yi (2017), under regularity conditions, φ̂CT is a consistent estimator of φ, and√

n(φ̂CT − φ) has the asymptotic normal distribution with mean zero and covariance matrix
HCT(φ)J−1

CT (φ)HCT(φ). When conducting inference about φ using this asymptotic distribution,
HCT(φ) and JCT(φ) are estimated by their empirical counterparts with φ̂ct plugged in.

4 Copula Selection and Prediction
Dissmann et al. (2013) proposed a sequential procedure which selects copula forms for each
of the (conditional) bivariate copulas level by level, where the selection is carried out with a
prespecified vine structure from a set of candidate copula functions. The sequential procedure
facilitates a fast model selection process by considering each (conditional) pair separately. In
the same spirit of the composite likelihood formulation (7), we assume the same dependence
structures within time blocks and ignore the dependence between blocks. Pretending to have
n×a independent time blocks, we apply sequential selection procedure of Dissmann et al. (2013)
to select copula functions in the C-Vine structure within blocks.

We are interested in predicting the observations for a subject in the study for a future time
point (i.e., time extrapolation) or for some new subjects at a given time point (i.e., subject extrap-
olation). Please see supplementary materials for our discussion on subject extrapolation through
simulation studies and data analysis. We focus on the time extrapolation in this subsection.

Suppose that for subject i, at time block k, the observations for all time points j � h have
been observed, and we would like to predict the observation at time (h + 1), where h is a given
time point. First, the estimate of the mean for the marginal model is calculated as

μ̂ikl = g−1
l (xT

ikl β̂l)

for l = 1, . . . , (h+ 1). Then, the error terms of the h observed time points can be calculated and
transformed as “pseudo-observations", i.e., for l = 1, . . . , h,

ε̂ikl = yikl − μ̂ikl and ûikl = Fl(ε̂ikl; ω̂l).

Next, the conditional distribution of the error term at time (h + 1) can be approximated as

f (εik(h+1)|ε̂ik1, . . . , ε̂ikh) = f (ε̂ik1, . . . , ε̂ikh, εik(h+1))

f (ε̂ik1, . . . , ε̂ikh)
,

which by (3), is equal to

f (ε̂ik1, . . . , ε̂ikh)fh+1(εik(h+1))
∏h

r=1 ckr,k(h+1)(ûikr|Dikr,ik(h+1)
, uik(h+1)|Dikr,ik(h+1)

)

f (ε̂ik1, . . . , ε̂ikh)
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= fh+1(εik(h+1); ω̂h+1)

h∏
r=1

ckr,k(h+1)(ûikr|Dikr,ik(h+1)
, uik(h+1)|Dikr,ik(h+1)

), (9)

where the conditional terms ûikr|Dikr,ik(h+1)
and uik(h+1)|Dikr,ik(h+1)

are calculated by applying the
formulas up|q = ∂cpq(up,uq)

∂uq
and uq|p = ∂cpq(up,uq)

∂up
iteratively, in which p and q can be any uncon-

ditional label, such as ikr, or conditional label, such as ikr|Dikr,ik(h+1). As a result, the predicted
outcome ŷik(h+1) for subject i at time point (h + 1) in time block k is given by

ŷik(h+1) = E(εik(h+1)|ε̂ik1, . . . , ε̂ikh) + μ̂ik(h+1)

=
∫ ∞

−∞
εik(h+1)f (εik(h+1)|ε̂ik1, . . . , ε̂ikh)dεik(h+1) + μ̂ik(h+1)

with f (εik(h+1)|ε̂ik1, . . . , ε̂ikh) determined by (9). The prediction variance of ŷik(h+1) is calculated
as

Var(ŷik(h+1)) = Var(εik(h+1))/(k − 1) + Var(εik(h+1)|ε̂ik1, . . . , ε̂ikh),

where the first component is related to the marginal model at time h + 1, and the second
component can be calculated from the conditional density f (εik(h+1)|ε̂ik1, . . . , ε̂ikh).

5 Simulation Studies
We conduct extensive simulation studies to examine the finite sample performance of the pro-
posed composite likelihood under simultaneous and two-stage estimation procedures. To save
space, the details of the simulation designs, evaluation measures, simulation results concerning
efficiency, robustness, model selection and subject extrapolation (making prediction for a sample
out of training set) are reported in supplementary materials. Here we summarize the simula-
tion results which confirm that the proposed methods yield consistent estimates, with negligible
empirical biases, fairly agreeable empirical standard errors and asymptotic standard errors and
good coverage rates of 95% confidence intervals. The simultaneous procedure incurs moderate
efficiency loss, compared to the full likelihood method, as expected. It is more efficient than
the two-stage estimation procedure, at the price of a longer computational time. The composite
likelihood provides robustness against misspecification on structure linking between time blocks
and accurate selection of the (conditional) bivariate copulas. The prediction performance for
subject extrapolation is similar to that for time extrapolation, which is discussed in detail as
follows.

We elaborate the studies to evaluate the time extrapolation (predicting for a future time)
using the proposed R-Vine model and compare it to that of the conventional regression models
and time-series models here. We consider various settings in Section 5.1, and report our findings
in Section 5.2, respectively.

5.1 Simulation Settings
We simulate 200 datasets of the sample size n = 500. The covariates xikl are generated indepen-
dently from the uniform distribution on [0, 5] for i = 1, . . . , n; k = 1, 2, 3, 4, 5; and l = 1, 2, 3, 4.
The marginal model is

Yikl = β0l + β1lxikl + β2lk + εikl, (10)
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where εikl ∼ N(0, σ 2
l ), for i = 1, . . . , n, k = 1, 2, 3, 4, 5 and l = 1, 2, 3, 4.

In this subsection, we assume the error terms bear the R-Vine structure as demonstrated
in Figure 1 and we further assume the conditional independence in tree structure T4 and beyond
for simplicity. We consider two scenarios where the dependence is either strong or moderate. For
the scenario of strong or moderate dependence, the (conditional) bivariate copulas connecting
the time blocks in T1, T2 and T3 are all Gaussian(0.8) or Gaussian(0.5), a Gaussian copula with
the parameter value shown in the brackets. More specifically, the bivariate copula functions and
their corresponding parameter values for the C-Vine structure within each time block are given
in Table 1 of the supplementary materials. In the scenario of strong dependence, the Kendall’s
Taus of the bivariate copulas in T1, T2 and T3 are set to be 0.7, 0.6 and 0.5, respectively; in
that of moderate dependence, they are set to be 0.4, 0.3 and 0.2, respectively. The values of the
dependence. We consider the following six scenarios:
• Scenario 1: The marginal parameters are set as ηl = (β0l , β1l , β2l , σl)

T = (l, l + 1, l + 2, 2)T

for l = 1, 2, 3, 4.
• Scenario 2: We restrict the marginal parameters across different time points to be the same.

Specifically, we set ηl = (β0l , β1l , β2l , σl) = (2.5, 3.5, 4.5, 2) for l = 1, 2, 3, 4.
• Scenario 3: The dependence structures within each time block previously assumed to be the

same are allowed to be different from block to block. More specifically, the bivariate copulas
and the value of dependence parameters for the strong and the moderate dependence settings
are given in Table 11 in the supplementary materials.

• Scenario 4: We consider the same settings as those of Scenarios 3, except that

ηl = (β0l , β1l , β2l , σl) = (2.5, 3.5, 4.5, 2), l = 1, 2, 3, 4.

• Scenario 5: The error terms εi are simulated from an AR(1) structure instead of an R-Vine.
We set ρ = 0.5 for m = ab = 20 time points. The marginal model is assumed to be

yij = 2.5 + 3.5xij − 50 sin

(
πj

2

)
+ 50 cos

(
πj

2

)
+ εij ,

where εij are independently generated from N(0, 1) for i = 1, . . . , n and j = 1, . . . , m. The
sine and cosine functions are used to model the periodic trend.

• Scenario 6: We consider the same setting as that of Scenario 5, except that the marginal
model does not contain the periodic sine and cosine functions but is of the form

yij = 2.5 + 3.5xij + 4.5j + εij ,

where εij are independently generated from N(0, 1) for i = 1, . . . , n and j = 1, . . . , m.
Scenarios 3 and 4 are designed to evaluate the prediction performance when the dependence
structures within each time block are not identical. Scenario 5 and 6 are designed when the true
dependence structure is not a vine.

We fit the following models and compare their prediction performance.
• VINE1 : The proposed R-Vine copula model is fitted using the proposed composite likelihood

method. For Scenarios 1-4, the (conditional) bivariate copula functions are assumed to follow
the correct forms of the settings. For Scenarios 5 and 6, the (conditional) bivariate copula
functions are all assumed to be the Gaussian copula. The parameters are estimated using
simultaneous estimation presented in Section 3.1.
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• VINE2 : The same as VINE1 except that the parameters are estimated using two-stage
estimation procedure presented in Section 3.2.

• VINE3 : The (conditional) bivariate copulas are selected using the methods presented in
Section 4 and the parameters are estimated under simultaneous estimation.

• VINE4 : The same as VINE3 except that the parameters are estimated under two-stage
estimation.

• MRM: We assume that the marginal model for the lth time point is identical across time
blocks. A marginal regression model of the form (10) is fitted. The dependence structure is
completely ignored.

• LRM: A linear regression model is fitted, which takes both time block k and time point l as
covariates and is of the form

yikl = β0 + β1xikl + β2k + β3l + εikl,

where εikl are assumed to follow N(0, σ 2), for i = 1, . . . , n; k = 1, 2, 3, 4, 5; l = 1, 2, 3, 4
• AR: An autoregressive (AR) model in time series analysis is considered. The model form and

the time lag are determined from the data.
We are interested in predicting the response value for a subject at a future time point. We

partition the data by time points, use the time points from the first four blocks as the training set,
denoted by {(yT

ikl, x
T
ikl)

T : i = 1, . . . , 500; k = 1, 2, 3, 4; l = 1, 2, 3, 4}, and reserve the time points
in the fifth block as the test set, denoted by {(yT

ikl, x
T
ikl)

T : i = 1, . . . , 500; k = 5; l = 1, 2, 3, 4}.
The training set is used to fit a model, which is utilized to predict yikl for a time point in time
block k = 5, based on the covariate information and the first l − 1 time points in the 5th time
block. We report the results in terms of Mean Absolute Error (MAE), the mean of the absolute
difference between the predicted value and the true value over all time points in the test set
across 200 simulations, and the associated prediction standard errors. We also provide the results
in terms of “percentage outperformance" in Table 13 in supplementary materials, of which the
definition is given in Section 3.4.3 in supplementary materials.

5.2 Prediction Results
We report simulation results for time extrapolations using all candidate models in terms of
MAEs in Table 1. We also provide the boxplots of overall MAEs and MAEs by time points in
Section 3.4.4 and Section 3.4.5 in the supplementary materials.

The four vine-based methods perform similarly across all the considered scenarios. They
all provide smaller and less variant MAEs, suggesting superiority in prediction performance
compared to other models. In Scenarios 1-4, it is not surprising that the vine-based models
outperform the other ones, since the true models hold a vine structure. But the vine-based
models still slightly outperform the AR model when the true model holds an AR(1) structure in
Scenarios 5-6 and the dependence structures based on vine copulas are completely misspecifed.
AR performs either comparably to MRM and LRM or a lot worse (e.g., in scenarios 1 and
3). The four vine-based models have smaller MAEs when the dependence is stronger while the
MAEs are comparable in the strong and moderate settings when using MRM, LRM and AR
models. The aforementioned prediction results are backed up by those measured by percentage
outperformance, the percentage of one model outperforming the other, which is formally defined
in Section 3.4.3 in the supplementary materials.

VINE1 and VINE3 yield smaller prediction standard errors than VINE2 and VINE4, be-
cause the simultaneous estimation tends to be more efficient than the two-stage estimation.
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Table 1: MAEs of different models for time extrapolation under the proposed scenarios. S: strong
dependence setting; M: moderate dependence setting.
Scenario VINE1 VINE2 VINE3 VINE4 MRM LRM AR

1(S) 0.760 (1.076) 0.760 (1.082) 0.765 (1.076) 0.765 (1.083) 1.596 (1.954) 2.999 (2.823) 11.356 (7.681)
1(M) 1.145 (1.344) 1.145 (1.352) 1.146 (1.345) 1.146 (1.352) 1.598 (1.963) 3.002 (2.832) 11.360 (7.682)
2(S) 0.760 (1.076) 0.760 (1.083) 0.765 (1.076) 0.765 (1.083) 1.596 (1.953) 1.596 (1.953) 1.597 (1.951)
2(M) 1.145 (1.344) 1.145 (1.352) 1.146 (1.344) 1.146 (1.353) 1.598 (1.963) 1.597 (1.963) 1.598 (1.962)
3(S) 0.847 (0.663) 0.865 (0.675) 0.837 (0.664) 0.888 (0.675) 1.596 (1.942) 3.000 (2.818) 11.356 (7.665)
3(M) 1.219 (1.168) 1.222 (1.190) 1.230 (1.169) 1.232 (1.190) 1.599 (1.951) 3.002 (2.827) 11.359 (7.781)
4(S) 0.847 (0.663) 0.865 (0.675) 0.837 (0.664) 0.888 (0.675) 1.596 (1.942) 1.596 (1.942) 1.597 (2.976)
4(M) 1.219 (1.168) 1.222 (1.190) 1.230 (1.169) 1.232 (1.190) 1.599 (1.951) 1.598 (1.951) 1.599 (2.981)

5 0.830 (1.040) 0.830 (1.040) 0.830 (1.040) 0.830 (1.040) 0.922 (1.154) 0.922 (1.154) 0.920 (1.153)
6 0.830 (1.040) 0.831 (1.040) 0.831 (1.040) 0.831 (1.040) 0.923 (1.156) 0.923 (1.156) 0.922 (1.154)

However, factoring in the computation cost, the improvement of using the former method over
the latter one seems marginal; in applications, it may not always be worthwhile to pursue the
simultaneous estimation method due to its computation cost. Incorporating the observation his-
tory can greatly reduce the prediction standard errors. Moreover, prediction standard errors
decrease as the strength of dependence increases.

From the boxplots of MAEs by time points in the supplementary materials, we find the
MAEs for a later time point are always smaller and less variant when using the vine models,
which is the benefit of taking into account the dependence structure within time blocks.

6 Data Analysis

6.1 Description of the Dataset

We consider the climate data available publicly on the website of Government of Canada. It
is homogenized Canadian surface air temperature data (Vincent et al., 2012). The data is
available at https://www.canada.ca/en/environment-climate-change/services/climate-change/
science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data.html. The
dataset we use contains monthly mean of daily mean temperature in Celsius degree at 47 On-
tarian observation stations from January 1978 to December 2018. Figure 2 is a run chart of the
monthly temperature of the 47 stations from January 1978 to December 2018, which obviously
exhibits a yearly periodic pattern and a mild overall increasing trend.

6.2 Statistical Models

In our analysis, the monthly temperature is used as the response variable, and the geographical
information, latitude, longitude and elevation, and the time variables year are covariates.
It is natural to select a year as a time block, yielding a = 40 time blocks (years) in total and
b = 12 time points (months) in each block. We partition the 47 stations into a training group
with 42 stations, and a test group with 5 stations, and we make a division in time by letting
January 1978 to December 2008 be the training period and January 2009 to December 2018 as
the testing period. The station information and the division of stations into training and test
groups are given in Table 14 in supplementary materials. We use the data of the 42 stations
from January 1978 to December 2008 to fit a model.

https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data.html
https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data.html
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Figure 2: Monthly temperatures of all 47 stations from January 1978 to December 2018 (in grey)
overlaid by that of the yearly average temperatures of the 47 stations (in red).

6.2.1 Marginal Model

The temperature highly depends on the geographical information, i.e., latitude, longitude
and elevation, and tends to have an increasing trend with respect to year in some months.
Preliminary marginal regression analysis (not shown here) suggests that the four covariates all
have linear or quadratic relation with the responses, and the identity link function seems to
be adequate, and the error terms of each month are appropriate to be modeled by a normal
distribution with mean 0.

We assume that the marginal model for the lth month is of the following form: for l =
1, 2, 10, 11, 12,

Yikl =β0l + β1l · latitude + β2l · longitude + β3l · elevation
+ β4l · year + εikl; (11)

and for l = 3, 4, 5, 6, 7, 8, 9,

Yikl =β0l + β1l · latitude + β2l · longitude + β2l2 · longitude2

+ β3l · elevation + β4l · year + εikl, (12)
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Table 2: Summary of the selected bivariate copula functions for the C-Vine structure within each
year. Cl=Clayton, Fr=Frank, Ga=Gaussian, Gu=Gumbel, In=Independent, Jo=Joe, T=Stu-
dent t , T1=Tawn type 1, T2=Tawn Type 2, CG=Clayton-Gumbel mixed, JC=Joe-Clayton
mixed, JF=Joe-Frank mixed. R means rotated with rotated degree in the bracket and S means
survival copula.

2 3 4 5 6 7 8 9 10 11 12 min(τ̂ ) max(τ̂)

1 RT1(180) T2 Ga Cl In SCl Cl Fr Ga In In −0.151 0.186
2 JF SCl In SCl SCl SCl T1 Jo T2 T2 0.000 0.215
3 T Cl In Cl RT1(90) In SJC RT2(180) T −0.054 0.179
4 RT1(180) T Ga In In RCl(90) SJF Ga −0.089 0.165
5 In SCl RT2(180) In SCl In Jo 0.000 0.076
6 Ga JC Fr Fr RJo(90) In −0.048 0.371
7 SJC SCl RJo(90) Gu RGu(90) −0.081 0.178
8 In RT2(180) In T −0.109 0.111
9 SGu RT2(180) In 0.000 0.180
10 RT2(180) RCl(90) −0.077 0.053
11 JF 0.208 0.208

where the εikl are marginally distributed as N(0, σ 2
l ) for l = 1, . . . , 12, i = 1 . . . , n is the index

of observation stations and k = 1, . . . , 40 is the index of time block (year).

6.2.2 Dependence Model

We ignore the dependence structure between years, model the dependence between months
within each year through a C-Vine. We first select the copula functions for the C-Vine structure
within each year by using the copula selection method we proposed in Section 4, which is
implemented using the VineCopula package in R based on a dataset of 1260 years with each
of the 42 stations in the training group contributing 30 years (the training period). All copula
functions available in the VineCopula package are included in the candidate set for selection;
the available copula functions, are described by Schepsmeier et al. (2020). Table 2 summarizes
the selected bivariate copula functions, where the lth row corresponds to the lth level of tree
in the C-Vine structure and variable l is the dominating variable in this level of tree. The lth
tree and the l′th month in Table 2 gives the selected (conditional) bivariate copula functions
between variables εikl and εikl′ . The minimum (min(τ̂ )) and maximum (max(τ̂ )) values of the
corresponding Kendall’s Tau for each level of the tree are also provided in the last two columns
in Table 2. We can see that the dependence between time points are moderate, especially in
higher level of trees.

6.2.3 Model Fitting, Model Comparison and Prediction

Based on the selected copula functions, we perform composite likelihood estimation. The total
number of parameters, which is around 150, is too large for common optimization algorithm
to optimize simultaneously and obtain simultaneous estimators. The four vine-based methods
provide comparable prediction results by simulations, thus we implement composite likelihood
estimation under two-stage estimation procedures (VINE4) here. The estimation for marginal
parameters are summarized in Table 3 and those for dependence parameters are summarized in
Tables 15 and 16 in supplementary materials.
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Table 3: The estimates of marginal parameters for each month l under simultaneous estimation
and two-stage estimation of composite likelihood method (standard error in the parentheses).

Two-Stage Estimation

l β0l β1l β2l β2l2 β3l β4l σl

1 −135.740(62.240) −1.978(0.041) −0.210(0.037) − −0.009(0.002) 0.101(0.030) 3.204(0.064)
2 −34.827(27.651) −1.739(0.042) −0.256(0.039) − −0.008(0.003) 0.043(0.014) 3.164(0.067)
3 22.785(89.626) −1.429(0.119) −44.929(19.069) 16.994(5.543) −0.005(0.003) 0.021(0.044) 2.207(0.116)
4 2.431(26.704) −1.012(0.099) −28.691(12.179) 25.054(4.627) −0.003(0.002) 0.025(0.133) 1.944(0.090)
5 44.601(6.172) −0.708(0.100) −14.893(26.378) 25.789(6.031) −0.002(0.007) 0.007(0.102) 1.939(0.034)
6 −100.571(21.824) 0.681(0.046) −17.278(12.666) 22.259(3.084) −0.002(0.003) 0.075(0.010) 1.578(0.034)
7 30.540(45.497) −0.626(0.036) −21.546(5.831) 19.626(2.988) −0.004(<0.001) 0.010(0.022) 1.417(0.034)
8 1.261(23.072) −0.685(0.032) −27.126(5.479) 15.480(3.112) −0.006(0.001) 0.025(0.011) 1.482(0.032)
9 −90.891(13.597) −0.877(0.073) −27.676(10.608) 8.679(3.121) −0.007(0.001) 0.074(0.006) 1.335(0.063)
10 −54.479(10.110) −0.918(0.020) −0.117(0.012) − −0.008(<0.001) 0.048(0.005) 1.518(0.029)
11 −28.415(11.045) −1.275(0.028) −0.061(0.018) − −0.009(<0.001) 0.042(0.006) 2.085(0.047)
12 −68.781(19.581) −1.764(0.045) −0.112(0.028) − −0.008(<0.001) 0.068(0.010) 3.324(0.067)

In the estimation results, β1l is negative for all 12 months, which suggests high-latitude
areas tend to have lower temperature year around and this trend is more obvious in winter
months (i.e., |β1l| is larger in months 1, 2, 3, 11 and 12). For winter months, i.e., months 1-2 and
10-12, the mean temperature has a linear negative relation with the longitude. For months 3-9
in spring and summer, the mean temperature has a quadratic relation with the longitude. β3l

is negative but close to zero, suggesting that as the elevation increases, the mean temperature
will slightly decrease. β1l, the annual temperature increase of the lth month in Celsius degree, is
positive in all 12 months, which suggests a mildly increasing trend of temperature change over
years. The findings perfectly align with our expectations.

We are interested in both subject extrapolation (predicting temperature for a new station
based on geographical information and time) and time extrapolation (predicting temperature
for a future time). In practice, the former allows us to predict temperatures for locations without
a station and the latter allows us to forecasting future temperatures. For subject extrapolation,
we predict temperatures for the 5 stations in the test group from January 1978 to December
2008, of which the results are provided in Section 4.3 in Supplementary Materials. For time
extrapolation, we predict for 37 stations in the training group from January 2009 to December
2018. There are five stations closed after 2008 and data from January 2009 to December 2018
are not available. We are interested in short-term, mid-term and long-term prediction. For short-
term prediction, the prediction for the lth month is made based on information from previous
l − 1 months in the same year and the prediction of the first months is using the marginal
distribution; in other words, this is prediction for the next month. For mid-term prediction, the
prediction for the lth month is made based on the temperature in the first season (months 1-3)
in the same year, for l = 4, . . . , 12; in other words, this is the prediction made for the rest of the
year. For long-term prediction, we are predicting the change of the temperature in a decade.

We compare the prediction performance of VINE4 with MRM, LRM and AR using the
evaluation metrics MAE and Percentage Outperformance as we did in the simulation studies:
• MRM: The monthly marginal regression model (MRM) (11) and (12) without considering

the dependence structure.
• LRM: A linear regression model (LRM) includes month x5 as a covariate to account for the
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variation across months. The LRM model is selected by the AIC criterion and fitted to be

Yikl =β0 + β1 · latitude + β2 · longitude + β3 · elevation

+ β4 · year +
2∑

j=1

β5j · monthj + εikl,

where εikl ∼ N(0, σ 2).
• AR: An autoregressive (AR) time series model, which is selected and fitted to be

Yit =β0 + β1 · latitude + β2 · longitude + β3 · elevation
+ β4 · year + β5sin

(
πt

6

)
+ β6cos

(
πt

6

)
+ εit ,

where εit ∼ AR(2) for t = 1, . . . , 360.
• SARIMA: A seasonal autoregressive integrated moving average (SARIMA) model, which is

commonly used for seasonal time series data prediction:

Yit =β0 + β1 · latitude + β2 · longitude + β3 · elevation + εit ,

where εit ∼ SARIMA(3, 1, 3)(1, 0, 1, 12) for t = 1, . . . , 360.

6.2.4 Prediction Results

We evaluate the prediction performance of our proposed method for short-term, mid-term and
long-term prediction. Figure 3 contains two subfigures, which corresponds to the prediction
performance for short-term (on the left) and mid-term (on the right) prediction, respectively.
The mid-term prediction was made for months 4-12, but the short-term prediction was made
for all 12 months, little previous information is available for months 1-3 and it tends to have
large prediction errors in the first three months. Therefore, the short-term prediction has larger
median MAEs across all methods.

From the boxplots of both short-term and mid-term predictions, the VINE4 has a smaller or
comparable median MAEs compared to the other methods, and the MAEs of VINE4 are the least
variant. Since the dependence between months within each year is moderate, the advantage of
the VINE4 method versus the marginal model (MRM) is limited, which agrees with our findings
in Section 5.2. We provide the station-by-station MAEs for short-term time extrapolation in
Table 19 and that for mid-term time extrapolation in Table 20 in the supplementary materials.

For long-term prediction, we take an average of β4l for l = 1, . . . , 12 in Table 3 and obtain
the average of the temperature annual increase of the 12 months, which is 0.045 in Celsius degree.
Based on the training group of 42 stations and the training period of 3 decides from January
1978 to December 2008, we predict the temperature increase in the next decade (January 2009 to
December 2018) in the area is 0.45 Celsius degree (with 95% confidence interval [-0.019, 0.109]).
The actual temperature increase from January 2009 to December 2018 is 0.65 Celsius degree.

7 Discussion
In this paper, we propose a R-Vine based regression model for analyzing longitudinal data with
long time span. We introduce composite likelihood methods which outperforms the likelihood-
based methods in terms of robustness and computational efficiency. We conduct extensive sim-
ulation studies to evaluate the performance of the proposed methods. The numerical studies
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Figure 3: Boxplot of MAEs for the short-term (on the left) and mid-term (on the right) time
extrapolation.

suggest that the (conditional) bivariate copulas can still be accurately selected and the param-
eters of interest can be consistently estimated with moderate efficiency loss when simultaneous
procedure is used. Moreover, the model provides more precise prediction results than the con-
ventional models in both the simulation studies and the real data analysis. Time extrapolation
is what we usually care about in prediction problems, and both time and subject extrapolations
are valuable for imputing missing response values.
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