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Dirichlet-multinomial Model with Varying
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Abstract: It is believed that overdispersion or extravariation as often re-
ferred is present more in survey data due to the existence of heterogeneity
among and between the units. One approach to address such a phenomenon
is to use a generalized Dirichlet-multinomial model. In its application the
generalized Dirichlet-multinomial model assumes that the clusters are of
equal sizes and the number of clusters remains the same from time to time.
In practice this may rarely ever be the case when clusters are observed over
time. In this paper the random variability and the varying response rates
are accounted for in the model. This requires modeling another level of
variation. In effect, this can be considered a hierarchical model that allows
varying response rates in the presence of overdispersed multinomial data.
The model and its applicability are demonstrated through an illustrative
application to a subset of the well known High School and Beyond survey
data.
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1. Introduction

The research related to analyzing cross-classified data in the presence of
overdispersion has received a great deal of attention. Recent research includes
(Goodman 1991a; Andersen 1991; Benzecri 1991; Baccini et al. 1991; Clogg and
Rao 1991; Cox 1991; Haberman 1991; Goodman 1991b). The broad applications
of cross-classified data (Wilson and Koehler, 1991; Bedrick, 1983; Ennis and Bai,
1999) give rise to the need for continued research. A test of relationships among
variables through a generalized linear model, with overdispersion arising natu-
rally through complex survey data, is the focus of this paper. A model approach
based on mixture distributions similar to what was utilized in the generalized
Dirichlet-multinomial distribution is presented. It provides, in part, an expan-
sion of the use of the distribution used in the generalized Dirichlet-multinomial
model as developed by Wilson and Koehler (1991) for surveys with equal and



414 J. R. Wilson and G. S. C. Chen

fixed response rates. Within a subpopulation there is a guarantee that the clus-
ters will always be of equal sizes. As such it is important to model the unknown
cluster sizes.

Some researchers believe that this ”variance discrepancy” or the fact that
the variance of sample data estimates often exceeds those mandated by a pre-
determined sampling distribution is usually the norm rather than the exception.
The sample data estimates are often referred to as being overdispersed. Efron
(1986) suggested that such a phenomenon may be caused by clumped sampling.
Cox (1983) pointed out that overdispersion in general has two effects. One is
that summary statistics have a larger variance than anticipated under the sim-
ple model. The second effect is a possible loss of efficiency in using statistics
appropriate for the single-parameter family.

Wilson and Koehler (1991) considered the variation among proportions sim-
ilar to the approach to randomized block design with random components for
interval-level data. They presented a model that allowed for the analysis of varia-
tion among replicates and among units for a given replicate. Ignoring either level
of variation leads to underestimation of the true standard errors of estimated
proportions. In particular, they used the Dirichlet-multinomial distribution to
incorporate the two types of variation.

Wilson and Koehler (1991) extended the Dirichlet-multinomial model by us-
ing a second Dirichlet prior to account for a second random component. A model
with similar properties was obtained by applying a Dirichlet prior to the general-
ized multinomial model as proposed by Tallis (1962) for dependent multinomial
random vectors. It is their use of the nested model that is further examined.
Nested factors are frequently encountered in longitudinal and repeated-measures
studies in which each subject or experimental unit provides responses at several
time periods, possibly under different sets of circumstances. The model consid-
ered in this paper can be viewed as multivariate extensions of the beta-binomial
and beta-correlated binomial models considered by Kupper and Haseman (1978)
and Crowder (1978) for binary data. Paul (1987) considered a modification of the
beta-correlated binomial model as a means of analyzing affected fetuses in litters
of live fetuses. Anderson (1988) reviewed some of the models found useful in the
analysis of overdispersed binomial data, including (a) models with a heterogeneity
factor, (b) random-effects models, (c) binomial-mixture models, and (d) models
for longitudinal data. The model considered in this paper allows flexibility of
the generalization of some of the random-effects models considered by Anderson
and are suitable for longitudinal data with a possible correlation induced by a
repeated-measures design.

A generalized Dirichlet-multinomial model within varying response rates is
presented in Section 2. Models as considered in this paper are also useful in
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analyzing economic data, social-survey data, and some types of business data.
Other applicable kinds of data include tracking of election results over time (the
focus groups are certainly of different sizes), the buying habits of consumers (the
family of consumers are not necessarily of the same size), and television ratings
during prime time weeks (the number of households in the cluster may be of
different size). In section 3, data obtained from the well known High School and
Beyond survey were analyzed using the Dirichlet model in this paper. The data,
though useful for illustrative purposes, are sufficient to accurately use the asymp-
totic properties of some of the test statistics. These illustrative data are used not
for educational policy but for the purpose of demonstrating the usefulness and
applicability of the model.

2. The Dirichlet-multinomial Model

Consider the following information for a number of clusters observed over
period T . The rows represents the responses over I categories and the columns
represents the J clusters. Suppose that, for a given period t, J clusters of unequal
sizes rj are randomly selected from a population with the vectors of proportions
for cluster j, pj = (p1j , . . . , pIj).

The Dirichlet model specifies that the j-th cluster (J = 1, . . . , J) of units in
a period of time t are such that over a given period of time the J clusters are
independent and random. Assume for each of the j-th cluster, the probability
of certain responses over I categories has probability vector, pj = (p1j , . . . , pIj)′,
(j = 1, . . . , J) is fixed over time period and provides a varying sample of rj

responses resulting in a multinomial vector of counts Xjt, of dimension I. The
total number of responses over the I categories, rj made by the j-th cluster
follows multinomial distribution with parameters rj and vector (p1j , . . . , pIj)′.
Further assume the vector of probabilities pj varies among clusters and follow a
Dirichlet distribution with parameter β and vector π = (π1, . . . , πI)′. Thus these
two assumptions lead to a mixture distribution, for responses among clusters,
is given by a mixture of multinomial with a Dirichlet distribution. Thus the
model assumes that the response for all clusters, conditional on the response
probabilities have a Dirichlet multinomial distribution,

fβ1,...,βI
(r1, . . . , rJ ) =

Γ(
∑J

j=1 βj)k!

Γ(
∑J

j=1 βj) + k

J∏
j=1

Γ(βj + rj)
rj!Γ(βj)

Across period t, assume that the conditional distribution of the probability
vector for the t-th period πt is distributed with Dirichlet distribution such that
over time, πt is Dir(α, θ) where α is an unknown constant and θ is an unknown
vector. The model may be displayed as Xjt|rj, pjt multinomial (rj , pjt) for j =
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1, . . . , J ; t = 1, . . . , T and pjt|β,πt are approximately independent Dir(β,πt)
such that πt|α, θ are approximately independent Dir(α, θ) for j = 1, . . . , J ; t =
1, . . . , T .

Distribution of Cluster Sizes

Further we assume that the number of responses from a cluster (or the cluster
sizes) is such that successive responses among clusters are assumed to be inde-
pendent with a constant mean µj , and behave as if random in chosen time-period.
The number of responses rj made in each of succession of equal non-overlapping
periods of relative length then follows a Poisson distribution with mean µjT . Also
the mean response rates vary among clusters and follow a gamma distribution
with density function e−µγ/β/{(β/γ)γΓ(γ)}.

This model accounts for the extra variation due to time and due to the sam-
pled units. Also it allows the cluster sizes rj , the number of units per cluster to
be modeled as it varies. Thus both the number of units per cluster denoted by
rj , and the underlying probability vectors πj are allowed to vary. In particular
the Dirichlet model is used to incorporate two sets of variability, and the Poisson
distribution is used to account for variation among the cluster sizes within a given
time period. Ignoring either level of variation might lead to underestimation of
the true standard errors of estimated proportions.

For period t, let the cluster sizes rj have a distribution that of the Poisson,
which arises when the units within the clusters are subject to certain probabilities.
Thus both the cluster sample sizes and the probability vector associated with each
cluster are allowed to vary resulting in a mixture of distributions.

Moments

The first and second moments of the mixture distribution can be easily found.
Under the Dirichlet model the covariance matrix for the conditional distribution
of the vector of proportions across time π̂ = T−1R−1

∑T
t=1

∑J
j=1 wjXjt where

wj = rjR
−1, Xjt = (X1jt, . . . ,XIjt)′ for fixed R =

∑J
j=1 rj has mean vector

E(π̂) = π and covariance matrix

V (π̂) = [(nR)c{1 + ρ(J − 1)}]−1
J∑

j=1

w2
jVπj

where c is part of an overdispersion factor, T is the number of time periods, ρ
is a measure of the correlation between units within clusters, Vπj = diag(πjt) −
πjtπ

′
jt, where diag(πjt) is the diagonal matrix with elements that of the vector,

πjt = (π1jt, . . . , πIjt)′. Then the unconditional first and second moments for the
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distribution are

E(Xt) = nR

J∑
j=1

rjπj and

V (Xt) = nr


b

∑
j

{wjVπj + n(rj − J)(J − 1)J−1πjπ
′
j}


 ,

where b = c{diag(πj) − [1 − n(rj − J)(J − 1)b−1J−1]πjπ
′
j}. For instance, when

rj = 1 for all j, we have R =
∑

j rj = J , and therefore, V (Xt) = nJ [bVπ]. The
variance is a linear combination of the variation due to the Dirichlet-multinomial
and the variation due to the unequal sample sizes. Thus, when the variance due
to the unequal sample sizes is small there is little difference between the Dirichlet-
multinomial and the proposed modeling of the random cluster sizes. Certainly
there will be no difference between the model variances when there is one unit
per cluster.

Test Statistic

Consider comparing the vector of proportions for two subpopulations. Similar
to the assumptions made for the general Dirichlet-multinomial model, Wilson and
Koehler (1991) using the appropriate covariance matrix, and given a consistent
estimator for c and for the expression {1+ ρ(J − 1)}, asymptotic chi-square tests
involving sufficiently smooth functions of π (this can be a linear combination of
the vectors of proportions for the different subpopulations) can be obtained as
Wald statistics,

X2
EGD = {g(π̂) − g(π)}′(DV̂ D′)−{g(π̂) − g(π)}, (2.1)

where (DV̂ D′)− is a generalized inverse of (DV̂ D′), V̂ is a consistent estimate
of V , and D is the matrix of first derivatives of the function g. The degrees
of freedom for the asymptotic chi-square distribution of X2

EGD, is the rank of
DĈD′.

Model Checking

When using the generalized Dirichlet model with varying and unequal cluster
sizes there are three basic assumptions: a) the correlations between units within
clusters, are constant for any two units; b) the Xj ’s, j = 1, . . . , J , are identically
multinomial distributed; and c) the cluster sizes are distributed as a Poisson
distribution. Test statistics were presented by Wilson and Koehler (1991) to
assess the validity of the first two assumptions. Wilson (1986) and Koehler and
Wilson (1986) gave large sample tests for the covariance structure associated with
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the Dirichlet-multinomial model. Methods of estimating c and the expression
{1 + ρ(J − 1)}, were given by Wilson and Koehler (1991). One set of estimators
can be obtained by constructing an I by J table (where I denotes the dimension
of π and J denotes the number of clusters) and a I by n table, where n denotes
the number of time periods. For each table, obtain the Pearson chi-square test
statistic, X2

(IJ) and X2
(In) respectively, for testing independence in a two-way

contingency table. Then estimates of {1+ρ(J−1)} and c are X2
(IJ)/(I−1)(J−1)

and X2
(In)/(I − 1)(n − 1) respectively.

A subset of the High School and Beyond data based on three time periods
T = 3 (the 1980, 1982, and 1984); clusters of students from one population, public
school and others from a second population, Catholic schools with I = 3 possible
responses (no TV on a weekday, one to five hours on a weekday, more than 5 hours
on a weekday) was used. The data can be arranged in a 3 × 2 × 3 contingency
table. For the analysis of these data, we let H21 denote the hypothesis for the
comparison of vectors of proportions between two subpopulations of schools.

3. Illustrative Example

A numerical example demonstrates the usefulness and applicability of the
generalized Dirichlet-multinomial with varying cluster sizes is the High School
and Beyond (HSB) longitudinal survey study in the United States, 1980 to 1986.
It was designed for studying the transition of high school students from secondary
school system to the postsecondary system. The High School and Beyond survey
of adolescents provides data on the daily television viewing habits of adolescents
for 1980, and follow up for years 1982 and 1984. These data were collected from
a complex survey-sampling scheme. The information about television viewing
habits was obtained from the original sample of students in 1980, 1982 and 1984.
High School and Beyond is part of a larger program of national longitudinal sur-
veys of American youth initiated by the National Center of Education Statistics
with the cohort of 1972 high school seniors. In this demonstration the aim is to
test the hypothesis that the daily viewing habits of students from the Catholic
schools differ from the public schools. It is essential that the use of any test
statistic to examine such a hypothesis incorporates the extra variation present in
the data. Some educators believe that the amount of homework and the greater
demands placed on students from Catholic schools will reduce the time available
for students to view television. This in turns may reduce the amount of unpopu-
lar programs they are exposed to. The use of these data portrays the applications
of modeling data in the presence of overdispersion.

Data taken from the High School and Beyond Survey were obtained primarily
by means of questionnaires and tests. The students were selected through a two-
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stage probability sample with schools as the first stage units and students within
schools as the second stage units (Frankel, Kohnke, Buonanno and Tourangeau,
1981). Two types of schools (clusters) were used for analysis in this paper; the
regular public schools and the regular Catholic schools. The combined data for
1980, 1982 and 1984 are summarized in Table 1. The histogram of the data by
type of schools is in Figure 1.

Figure 1: Adolescents’ weekly TV viewing habit for 1980, 1982 and 1984 by
type of school in “High School and Beyond”

Table 1: Adolescents’ weekly TV viewing habit for 1980, 1982, and 1984 by
type of school in ”high school and beyond

Year School No TV One to 5 Hours More than 5 Hours
on a weekday on a Weekday on a Weekday

1980 Public 3 50 32
Catholic 3 38 9

1982 Public 4 62 19
Catholic 6 39 5

1984 Public 1 53 31
Catholic 1 38 11

3.1 Results

The possible responses to the television viewing question are: less than one
hour per day, one to five hours per day, and more than five hours per day. The
estimated vector of proportions for the subpopulation of cluster for the public
(h = 1) and for the Catholic schools (h = 2) over the three periods are π̂1 =
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(0.0310, 0.647, 0.322)′ and π̂2 = (0.067, 0.767, 0.166)′ respectively. There is some
indication that students from the regular public schools viewed more television
than their counterparts from the Catholic schools. However, for this comparison
to be tested since the extra variation present may be enough to negate such
apparent differences.

The usual Pearson chi-square test for checking homogeneity across school has
a value of 13.18 on 2 degrees of freedom with an observed significance level of .001.
The value of the test statistic is substantially reduced when the effects of cluster
sampling, repeated measurement, and sample size variation are taken into con-
sideration. The proposed Dirichlet model with unequal cluster sizes is employed
to take into account effects due to cluster sampling, repeated measurement, and
sample size variation.

There are 30 clusters with varying sizes from the regular public schools and
21 clusters also with varying sizes from the Catholic schools. The size of the
clusters varies between 1 and 20 for public schools and between 1 and 8 for the
Catholic schools. There was no reason to believe that the rj ’s are not distributed
as a Poisson. The model assumptions were checked using the methods of Wilson
and Koehler (1991). These assumptions were sufficiently satisfied. The details of
these assumptions were omitted here for sake of brevity.

The covariance matrices for subpopulation of public and Catholic schools π̂1

and π̂2 under the Dirichlet model with unequal cluster sizes are

V (π̂1) =




0.86 12.54 6.23
12.54 263.70 128.50
6.23 128.50 66.41


 × 10−3

and

V (π̂2) =




3.17 27.65 6.01
27.65 326.73 69.11
6.01 69.11 16.91


 × 10−3.

The overall probability vector π̂0 = (0.046, 0.696, 0.258)′ based on weights of
α1 = 0.59 and α2 = 0.41 in the linear combination of π̂1 and π̂2. The weights were
chosen to be inversely proportional to the relative size of the multiplier in V (π̂h)
thus αh, h = 1, 2 is proportional to n−1m−1

h ch{1 + ρk(Jh − 1)}. The parameter
estimates ĉ1 = 1.156, ĉ2 = 1.130, {1 + ρ̂(J1 − 1)} = 1.749 and {1 + ρ̂2(J2 − 1)} =
1.524.

To test for homogeneity among the subpopulations, define g(π̂) = π̂h − π̂0

with covariance matrix V (π̂h − π̂0) = V (π̂h) − 2αhV (π̂h) +
∑2

k=1 α2
kV (π̂k)

(Koehler and Wilson, 1986). Thus, for 30 clusters in the public schools and
21 clusters in the private schools the test statistic X2

EGD from equation (2.1) for
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homogeneity has a value of 2.38 with 2 degrees of freedom. Therefore, the ap-
parent differences in viewing habits between public and Catholic school students
are not significant. From the interval coverage there seems to be no difference in
the television viewing habits based on type of school.

4. Conclusions

A modification to the Dirichlet-multinomial model with unequal cluster sizes
can be very useful for analyzing survey data. It takes into account a measure
of any clustering effect present in the data. In addition, it incorporates any
variation across time and variation between units for a given time period. It
provides a means of addressing the problem of extra variation caused by the
random cluster sizes. Some previous works suggest an approximate technique
for unequal clusters but the Dirichlet model can be expanded to unequal cluster
sizes uses the Poisson distribution to address the unequal cluster sizes directly.
The proposed model-based method brings together three strategies for modeling
complex designs, namely, i) Dirichlet mixing for clustering effects, ii) Dirichlet
mixing for time dependencies as well, and iii) Poisson distribution for varying
cluster sizes.
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