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Abstract: Stochastic modeling and analysis of international key compar-
isons (interlaboratory comparisons) pose several fundamental questions for
statistical methodology. A key comparison (KC) is specifically designed to
derive the key comparison reference value and to assess conformance of cal-
ibrations by participating national metrology laboratories at a few, “key”,
settings for a particular measurement process. An approach to the statis-
tical study of key comparisons data is proposed using a model taken from
meta-analysis. This model leads to a class of weighted means estimators
for the consensus value and to a method of assessing the uncertainty of the
resulting estimates.
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1. Introduction and Summary

The need for statistically sound analytic methods for collaborative metrology
studies data motivates this paper. Several approaches are known, but at present
there is no commonly accepted methodology for statistical analysis of the inter-
laboratory studies. The paper begins with a review of the central issues arising in
statistical modeling and analysis of international key comparisons data, proceeds
to formalize the mathematical structure for these data and then compares sev-
eral procedures for calculation of the Key Comparison Reference Value (KCRV)
and for the estimation of the uncertainty for this value. Evaluation of KCRV is
demanded by the main document on international cooperation for measurement
quality assurance, the Mutual Recognition Agreement (MRA) (1999) published
by Le Comite International des Poids et Mesures. The MRA is realized through
KC which typically involve National Metrology Institutes (NMI) each of which
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analyzes its measurements and reports the results consisting of this NMI’s esti-
mate of the measurement value along with the combined standard uncertainty.

Uncertainty, as the term in measurement science or metrology, is distinct
from variance, commonly evaluated for other statistical analyses. Uncertainty
comprises two components. The first uncertainty component, Type A (aleatory)
uncertainty, corresponds directly to estimated standard deviation, and is based
upon standard statistical (usually least squares) variance estimates. Thus, Type
A errors are either estimable or confirmable from data. However, the second
component, Type B (epistemic) uncertainty, draws on expert scientific judgment
as well as data and provides information about effects and/or extra-variation
that are not observable or are only partially observable within the context of the
study itself. In an international KC each participant provides the uncertainties
of each type for its measurements. Consequently for combined analysis, it is of
critical importance to determine the dependence of each statistical method for
calculation of the KCRV and its associated uncertainty upon both Type A and
Type B errors in the participants’ reports.

Section 2 of this paper examines further Type B uncertainty, and reviews
general criteria for statistical estimates of uncertainties. The recently published
key comparisons for accelerometers, CCAUV.V-K1 (von Martens, Elster, Link,
Taebner and Wabinski, 2002) illustrates key comparisons implementation and the
statistical issues involved. Section 3 presents a model for inference inspired by
meta-analysis that provides explicit representation of both uncertainties. This
model is used to derive a class of weighted means estimators whose properties
are presented in Section 4, where approximate confidence intervals are obtained.
Section 5 illustrates these methods using the CCAUV.V-K1 study and presents
simulation results to compare the estimators. Section 6 summarizes this paper.

2. Principal Issues in Uncertainty Budgets

An International Key Comparison is an interlaboratory study that involves
several NMIs, with one of them, the pilot laboratory, responsible for coordination
of the whole study and for analysis of the combined results from the participants.
The purpose of a KC is to facilitate international trade by determining the degree
of conformance of measurements made by the various NMIs. For example, based
on the KC, a customer for calibration service should be able to assess which of
the other NMIs could provide a calibration that would be acceptable for meeting
specifications set in his/her own country. (Thus the goal of KC differs from the
objective of aggregating experiments to provide the most accurate value for a
physical constant with the highest precision possible.) The customer’s practical
decision requires knowing not only the NMIs’ Reference Values and the KCRV,
but also uncertainty for each of these.
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The design of a KC requires each participating NMI to follow a carefully pre-
scribed measurement process. When preparing the KC measurement protocol,
the organizing scientists must rigorously define the individual components to be
itemized in calculating Type B uncertainty for that KC. Gleser (1988) describes
uncertainty as “measure of spread of the collection of values not rendered implau-
sible by the measurement”. After stating aleatory uncertainty with data-driven
computations, epistemic error then accounts for both systematic effects and ran-
dom sources of other plausible imperfections in a measurement. These could in-
clude wear and degradation as well as flaws or idiosyncrasies in the measurement
instrument itself; probes used to define locations on a surface have individual
imperfectly spherical geometries and they also suffer deformation through use.
Input quantities to computed measurands and to correction factors are inexact;
environmental measurements such as temperature carry their own uncertainties
that depend on the thermometer or other measurement device; measurements
involving electron beams are affected by secondary electron scatter. Operators
of complex measuring instruments have “off-days”; measurements near the limits
of the instrument’s range may have peculiar biases or instabilities. Thus resul-
tant epistemic uncertainty can dwarf the more ordinary (data-based and mea-
surable) sources of variation by at least an order of magnitude, especially when
the measurement process is ultra-precise. Expert judgment drawing on previous
accumulated data when available, on experience or on scientific wisdom, is used
to assess epistemic uncertainty according to KC prescription for its components.

Swyt (2001) provides a review of uncertainty, especially Type B, in the context
of the evolution of length and dimension measurements. The once international
standard for the meter was a platinum-iridium bar with two etches “precisely”
one meter apart. There was a parallax problem at the micro-scale since the
etched lines themselves have a width. The magnitude of epistemic uncertainty
could have been provided by setting an upper bound, based on etching widths,
or by invoking expert opinion about the probable divergence due to parallax or
by giving a probability distribution over a range of these divergences. Measuring
the width of a line is subject to different biases and uncertaintites; no line has
perfectly straight edges, neither are the edges irregularitites parallel. Therefore
the specific location of measurement contributes to Type B error. However, even
in this example epistemic uncertainty is not unique; scientific wisdom is essential
as the biases in reading the endpoints of a distance tend to be subtractive when
measuring between the lines, and additive when measuring across a solid line.

Now the platinum-iridium bar has been replaced, first by a wavelength of
light, later by the propagation of an electromagnetic wave in an interval of time.
At this time the length standard is measured in terms of the frequencies of vis-
ible light lasers (iodine-stabilized HeNe laser) directly against the cesium-beam
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atomic clock. With much more complicated measuring instrumentation, every
part of the instrument contributes to Type B error and all parts are subject to
variation from different sources. Thus the epistemic uncertainty associated with
the current standard for the meter is influenced by more than 30 different sources
of errors. Some of these are instrument phenomena for which the physics is un-
derstood and for which one can derive mathematically limits of variation. Some
of the other sources are due to the drift or cyclic behavior of the instrument or to
the environmental inputs, and these can be predicted from a long series of obser-
vations. Some errors result from variation in inputs to complicated algorithms,
and can be modeled by MCMC or other simulations. Still others require expert
opinion and a Bayes theory formulation. The Central Limit Theorem motivates
normality to represent type B uncertainties encountered in modern KC, and this
is the suggested model in Section 3.

In the end, all errors are combined (usually by using a quadrature summa-
tion, which tacitly assumes independence.) The final statement of the Type B
uncertainty is by the expert who submits itemization by source, and whose final
summary value is his/her personal “best judgment” incorporating all available
experience and expertise. Upon completion of KC each NMI reports its own
measured values (or computed estimates of the Reference Value) and submits
its complete Uncertainty Budget consisting of the Type A uncertainty and the
Type B uncertainty which are always presented in terms of individual measure-
ments. Indeed a future customer would ordinarily require a single measurement
or calibration, but the sample sizes (number of repeats) typically vary among
NMI’s.

The KC of accelerometers (CCAUV.V-K1, von Martens et el., 2002) was or-
ganized to compare measurements of sinusoidal linear accelerometers at specified
frequencies in the range from 40Hz to 5kHz. (Each accelerometer measured charge
sensitivity at the specified frequencies and at different acceleration amplitudes.)
Two types of (single-ended design and back-to-back) accelerometers were em-
ployed at each of twelve NMIs (including NIST), with the Physikalish-Technische
Bundesanstalt, Germany, serving as the pilot laboratory. Each participating NMI
reported its own laboratory means, the within lab variances (Type A uncertain-
ties), and the combined (Type A plus Type B) uncertainties with a complete
Uncertainty Budget.

The objective was to determine the KCRV for charge sensitivity and the
associated uncertainty (separately for each type of accelerometer and for each
specified frequency). Type B uncertainties included errors in accelerometer volt-
age, amplitude gain, temperature variation, total harmonic distance, translational
motion, minimum point resolution, vibrational frequency, displacement quantifi-
cation, hysteresis, residual interference, etc. . In this heterogeneous study the



Statistics in Metrology 397

uncertainties by NMI’s differed by factor of 7 to 9 (variances by a factor 50−80).
Beside KCRV with its uncertainty, the statistical analysis of Key Comparison

data includes calculation of, for each participating NMI, a degree of equivalence
(deviation of NMI value from consensus KCRV) plus combined uncertainty for
that deviation. Typically, a laboratory whose measurement results deviate sig-
nificantly from the KCRV is flagged; the results of these measurements are con-
sidered suspicious. Of course, it is possible that such a laboratory provides the
best estimate of the measurand, and MRA acknowledges such a possibility.

Thus, a principal issue revolves around the expression of Type B errors and
its implications for the KCRV and the degrees of equivalence including their
associated uncertainties. In this paper we suggest a hierarchical model for Type B
error and derive KCRV estimators. We also give methods to evaluate the variance
of these KCRV estimators which provide approximate confidence intervals for
KCRV and for the degrees of equivalence. The effects of epistemic uncertainty
and its misspecifications on the mean squared errors and coverage probabilities
are explored via a Monte-Carlo study.

3. The Meta-Analysis Model

Consider the situation where one the key comparison reference value is to be
established by combining information from several, say, p laboratories. We ac-
cept a natural model suggested by analysis of variance and meta-analysis. In this
model the data in the ith laboratory has an additive error structure consisting
of a random laboratory effect λi, the laboratory bias bi (representing type B un-
certainty), and the measurement errors εij (contributing to Type A uncertainty).
More precisely, assume that the data Yij has the form

Yij = µ + λi + bi + εij . (3.1)

Here i = 1, . . . , p indexes the laboratories, j = 1, . . . , ni with ni representing the
sample size (the number of measurements) in laboratory i; µ is the true mean (the
KCRV). The random variables λi and εij are assumed to be mutually independent
and normal with zero means and variances σ2

L and τ2
i respectively.

The random between-laboratories effect λ (interactions after Cochran, 1937,
or hidden errors in terminology of Willink, 2002) is often observed in heteroge-
neous collaborative studies where individual laboratories estimates of the true
mean can be quite different. It is possible that in (3.1) λi ≡ 0. The component bi

representing the epistemic uncertainty assessed by the laboratory i is composed
of a systematic bias component, δi, and a variance component, β2

i . Define bi in a
hierarchical way, bi | δi ∼ N(δi, β

2
i ), with the expected bias component δi for NMI

i being normal, N(η, ϕ2
i ). Then, marginally, Ebi = η, V ar(bi) = ϕ2

i + β2
i = σ2

Bi
.
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We assume that the reported combined standard Type B uncertainty provides
an estimate of the variance, σ2

Bi
, whereas the individual estimates of η, ϕ2

i and
β2

i are not available. Then only the parameter θ = µ + η (but not µ itself) can
be estimated; one of the goals of this paper is to study the effect of the epistemic
uncertainty on the performance of confidence intervals for the KCRV µ. A large
bias η reduces to substantial deterioration of the existing decision rules, but a
large variance component, σ2

Bi
, of the Type B uncertainty is relatively harmless

in this regard.
In matrix notation our model can be written as a particular case of the general

linear model y = Xθ + u + e. Here y is the total data vector of dimension
n = n1 + . . . + np; X is a n × 1 vector formed by ones, u is the same size
vector formed by p independent, mean zero, random normal components with
the variables in the i-th block of size ni having variance σ2

L + σ2
Bi

. Thus θ is the
unknown parameter (fixed effects) and u is random effect vector uncorrelated
with the errors vector e. Therefore, the equation (3.1) reduces to the classical
random effects model with the common mean θ, the between-laboratories effect
with the variance σ2

L and the errors whose variance is σ2
Bi

+ τ2
i . A subjective

estimate of Type B error, σ2
Bi

is provided, and statistical estimate of τ2
i is also

available.
The equation (3.1) leads to the following model for the sample means, Yi =

Ȳi =
∑

Yij/ni, Yi|µ, η ∼ N(µ + η, σ2
L + σ2

i + σ2
Bi

), where σ2
i = τ2

i /ni. Clearly,
EYi = θ, and E(Yi−µ)2 = σ2

L+σ2
i +σ2

Bi
+η2. Notice that an unbiased estimate of

the variance σ2
i (Type A uncertainty) is available via the sample variances, s2

i =∑
j(Yij −Yi)2/[ni(ni −1)] for the i-th laboratory, i = 1, . . . , p. In contrast, σ2

Bi
(a

component of Type B uncertainty) is not directly estimable from the data. In a
different model (e.g. Hall and Willink, 2001) the epistemic uncertainty is taken
to be the uniform (or triangular) distribution on an interval. However, in the
authors’ experience based on many interlaboratory studies, this does not present
a very realistic model. Besides numerical differences between these distributions
are minor.

In the next Section we review several estimators of θ and the estimates of
their variance. The study of the classical maximum likelihood estimate of θ in
the model (3.1) when bi ≡ 0 was initiated by Cochran (1937) (see Rao, 1981 for
a historic review). The solution of the likelihood equations in the situation when
σ2

i ≡ σ2 was explored by Harville (1977). This, as well as the solutions for the
restricted likelihood, are discussed in Searle, Casella and McCulloch (1992, chap.
6 and 8).
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4. Weighted Means Statistics: Approximate Distributions and Confi-
dence Intervals

In our problem the maximum likelihood estimator does not have an explicit
form; the negative log-likelihood function (to be minimized) for given Yi and
s2
i , i = 1, . . . , p is∑

i

[
(Yi − θ)2

σ2
L + σ2

Bi
+ σ2

i

+ log(σ2
L + σ2

Bi
+ σ2

i )

]
+

∑
i

(ni − 1)
[

s2
i

σ2
i

+ log σ2
i

]
.

This function may not be unimodal, but the minimizer in θ has the form, θ̂ =∑p
i=1 ω̂iYi, with the weights ω̂i = (σ̂2

L + σ2
Bi

+ σ̂2
i )

−1/
∑

j [σ̂
2
L + σ2

Bj
+ σ̂2

j ]
−1. A

numerical iterative procedure to find σ̂2
i and σ̂2

L when σ2
Bi

≡ 0 is given in Vangel
and Rukhin (1999).

Because of the complicated nature of the maximum likelihood estimator sim-
pler procedures are desired in metrological applications. The goal here is to
introduce certain weighted means statistics useful for the KCRV estimation. To
derive them we assume that η = 0, so that Yi ∼ N(µ, σ2

L + σ2
Bi

+ σ2
i ). Let us

start with the case when all variances σ2
L, σ2

i and σ2
Bi

are known. Then the best
unbiased estimator of the reference value µ is a weighted means statistic,

µ̂ =
∑p

1 wiYi∑p
1 wi

, (4.1)

where wi = w0
i = (σ2

L + σ2
Bi

+ σ2
i )

−1. In this situation it is also the maximum
likelihood estimator, and without normality assumption (but when all variances
are known) this is the best linear (in Yi) unbiased estimator of µ.

Assume that the reported type B uncertainty, σ2
Bi

, provides a good estimate
of the corresponding variance component, and the within-laboratories variances
σ2

i can be estimated by the available statistics s2
i . Even without the normality

assumption, for arbitrary non-random weights wi,

E

p∑
1

wi(Yi − µ̂)2 =
p∑
1

wiV ar(Yi) −
∑p

1 w2
i V ar(Yi)∑p
1 wi

. (4.2)

(See Appendix for the proof.) In particular, when wi = 1/(σ2
Bi

+ σ2
i ), (4.2) gives

E

p∑
1

(Yi − µ̂)2

σ2
Bi

+ σ2
i

= p − 1 + σ2
L

 p∑
1

1
σ2

Bi
+ σ2

i

−
∑p

1
1

(σ2
Bi

+σ2
i )2∑p

1
1

σ2
Bi

+σ2
i

 . (4.3)

The idea behind the method of moments suggests the following procedure
to estimate σ2

L by using (4.3) while replacing σ2
i by s2

i . In the formula for the
weights of the form,
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wi =
1

z + σ2
Bi

+ s2
i

, (4.4)

take a non-negative z = zDL, determined as

zDL = max

0,

∑p
1

(Yi−µ̂GD)2

σ2
Bi

+s2
i

− p + 1

∑p
1

1
σ2

Bi
+s2

i
− ∑p

1
1

(σ2
Bi

+s2
i )2

[∑p
1

1
σ2

Bi
+s2

i

]−1

 ,

where

µ̂GD =

∑p
1

Yi

σ2
Bi

+s2
i∑p

1
1

σ2
Bi

+s2
i

. (4.5)

This procedure is a direct extension of the method suggested by DerSimonian
and Laird (1986) when σ2

Bi
≡ 0. In this case (4.5) is the well-known Graybill-

Deal estimator of the common mean. Thus, the statistic µ̂GD and the weights
(σ2

Bi
+ s2

i )
−1 corresponding to σ2

L = 0, are used to evaluate the sum in the left-
hand side of (4.3) which is then employed to estimate the unknown σ2

L. The
resulting estimator for µ has the form

µ̂DL =

∑p
1

Yi

zDL+σ2
Bi

+s2
i∑p

1
1

zDL+σ2
Bi

+s2
i

. (4.6)

A similar extension of the Mandel-Paule algorithm (1982) also uses weights
of the form (4.4) in the formula (4.1) for the weighted means statistic. However,
now the value, z (designed to estimate σ2

L) is motivated by the formula which
follows from (4.2) when the weights wi are optimal, i.e., when they coincide with
w0

i ,

E

p∑
1

w0
i (Yi − µ̂)2 = p − 1.

Thus the Mandel-Paule estimating equation for z is,

p∑
1

(Yi − µ̂)2

z + σ2
Bi

+ s2
i

= p − 1.

The explicit solution of this equation for p ≥ 3 does not exist, in practice a
number of iterations is needed to get it with desired accuracy. The following
approximation is the one step application of the Newton method for the initial
value z = zDL. It is based on the formula for the derivative of the weighted
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sum of squares (e.g. Rukhin, Biggerstaff and Vangel, 2000, p 323) and is easily
computable,

zMP = max

[
0, zDL +

∑
i(Yi − µ̂DL)2/(zDL + σ2

Bi
+ s2

i ) − p + 1∑
i(Yi − µ̂DL)2/(zDL + σ2

Bi
+ s2

i )2

]
.

The resulting estimator of µ has the form

µ̂MP =

∑p
1

Yi

zMP +σ2
Bi

+s2
i∑p

1
1

zMP +σ2
Bi

+s2
i

. (4.7)

Rukhin (2002) reviews the Mandel-Paule estimator and the DerSimonian-
Laird procedure when σ2

Bi
≡ 0. Notice that (p−1)−1

∑p
1(Yi−µ̂)2/(σ2

Bi
+σ2

i ) is the
square of the so-called Birge ratio which is commonly used in metrology for testing
goodness-of-fit (Mohr and Taylor, 1999). Thus, the Mandel-Paule procedure seeks
the weights under which the squared Birge ratio equals its expected value.

When the within-laboratories variances σ2
i can be assumed to be known (in

practice they are taken to be s2
i ), the maximum likelihood estimation of µ was

investigated by Willink (2002). This estimator also is a weighted means statistic
(4.1) with the weights of the form (4.4) where z = zW is the minimizer in z of
the negative loglikelihood function,

zW = arg min
z

p∑
1

[
(Yi − µ̂)2

z + σ2
Bi

+ s2
i

+ log(z + σ2
Bi

+ s2
i )

]
. (4.8)

The resulting likelihood equation,

p∑
1

(Yi − µ̂)2

(z + σ2
Bi

+ s2
i )2

=
p∑
1

1
z + σ2

Bi
+ s2

i

,

can be solved iteratively.
For all these statistics, the weights have the form (4.4). To estimate the

variance of µ̂, the following procedure suggested in a more general setting of
linear models by Horn, Horn and Duncan (1975) provides a good answer. Let
ωi = wi/(

∑p
1 wk),

∑p
1 ωi = 1, be fixed normalized weights, which determine the

weighted means statistic, µ̂ =
∑p

1 ωiYi, with the variance, V ar(µ̂) =
∑p

1 ω2
i V ar(Yi).

Then

V ar (Yk − µ̂) = (1 − 2ωk)V ar(Yk) +
p∑
1

ω2
i V ar(Yi). (4.9)
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In the case when ωi = ω0
i = w0

i

[∑p
j=1 w0

j

]−1
, µ̂ is the optimal least squares

estimator, and the second term in the right-hand side of (4.9) simplifies to[∑p
i=1 V ar(Yi)−1

]−1 = ω0
kV ar(Yk). By substituting this expression in (4.9), one

obtains V ar (Yk − µ̂) = (1 − ω0
k)V ar(Yk). Horn, Horn and Duncan (1975, p

382) argue that by continuity, if the weights are close to ω0
k, this is an approx-

imate identity. Thus, one derives an almost unbiased estimator of V ar(Yk) as
(Yk − µ̂)2/(1 − ωk), and the corresponding estimate of the variance, V ar(µ̂), is∑p

1 ω2
i (Yi − µ̂)2/(1 − ωi).

This statistic gives an estimate of the variance of any weighted means statistic
for the weights (4.4) when s2

i are fixed. The method for the plug-in weights ωi

= (z + σ2
Bi

+ s2
i )

−1/
∑

k(z + σ2
Bk

+ s2
k)

−1 leads to the following estimate of the
variance of V ar(µ̂),

V̂ ar(µ̂) =

 p∑
j=1

1
z + σ2

Bj
+ s2

j

−1
p∑

i=1

(Yi − µ̂)2

(z + σ2
Bi

+ s2
i )2

 ∑
k:k �=i

1
z + σ2

Bk
+ s2

k

−1

.

(4.10)
Simulations, some of which are reported in the next Section, show that (4.10)

provides a good approximation to the true value of this variance for random
weights above with z = zDL, z = zMP , or z = zW . They demonstrate that (4.10)
is superior to the estimate, [

p∑
1

1
z + σ2

Bi
+ s2

i

]−1

, (4.11)

which has been suggested by Mandel (1991, p 72), z = zMP , by DerSimonian and
Laird (1986, p 183), z = zDL, or by Willink (2002, p 348), z = zW . Moreover, it
gives a better estimate of the variance of the maximum likelihood estimator than
the inverse of the observed Fisher information [

∑p
1 1/(z + σ2

Bi
+ σ̂2

i )]
−1 (which

typically underestimates the true variance.) For large p, it is close to the estimate
suggested by Rukhin and Vangel (1998),

p∑
1

(Yi − µ̂)2(z + σ2
Bi

+ s2
i )

−2[
p∑

k=1

1/(z + σ2
Bk

+ s2
k)]

−2.

Simulations also demonstrate that the tails of the distribution of the pivotal ratio,

(µ̂ − µ)/
√

V̂ ar(µ̂) can be well approximated by those of the t-distribution with
p − 1 degrees of freedom.

The same method produces uncertainty estimates of the square of the kth
laboratory deviation from the KCRV. This deviation, the so-called degree of
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equivalence, must be reported according to MRA (1999), which does not give
a formal definition. For a given KCRV estimator µ̂ we define the degree of
equivalence of the kth laboratory as E(Yk − µ̂). In the model (3.1), when µ̂ is a
weighted means statistic, E(Yk−µ̂) = 0. Thus, the statistic (Yk−µ̂)2, k = 1, . . . , p,
captures possible violations of (3.1). By using (4.9), the almost unbiased estimate
of V ar(Yk), as above, produces the following estimator,

Ê(Yk − µ̂)2 =
(1 − 2ωk)(Yk − µ̂)2

1 − ωk
+

p∑
1

ω2
i (Yi − µ̂)2

1 − ωi

= (1 − ωk)(Yk − µ̂)2 +
∑
i�=k

ω2
i (Yi − µ̂)2

1 − ωi
.

Notice that Ê(Yk − µ̂)2 > (1 − ωk)(Yk − µ̂)2. Thus the ratio, Tk = (1 − ωk)
(Yk − µ̂)2/Ê(Yk − µ̂)2, is bounded, 0 < Tk < 1, and, according to our simulations,
has approximate beta-distribution whose parameters can be estimated by the
method of moments. The values of Tk exceeding the critical point of this beta-
distribution suggest that EYk is different from µ.

In Section 5 results of a Monte Carlo simulation study are reported for several
weighted means statistics; the variances of these statistics were estimated via
(4.10). In addition, the maximum likelihood estimate of µ and the median,
which do not have the form (4.1) with weights (4.4), are also evaluated there. To
estimate the variance of the median, the method of Sheather (1986) has been used.
The corresponding estimator is based on order statistics, Y(1) ≤ Y(2) ≤ · · · ≤ Y(p),

p∑
1

wk(Y(k) − Ỹ )2, (4.12)

with Ỹ =
∑

k wkY(k) and probabilities wk given in Tables 1 and 3 of Sheather
(1986). For example, when p is odd, (p = 2m + 1)

wk =

(
k−1/2

p

)m (
p−k+1/2

p

)m

∑p
j=1

(
j−1/2

p

)m (
p−j+1/2

p

)m .

This method gives more accurate variance estimates than that of Maritz and
Jarrett (1978), but still produced upwardly biased estimates. This fact is not
surprising in view of this method’s close relationship to the jackknife procedure,
which can be inconsistent in our situation (Efron and Tibshirani, 1993, Sec 11.6).
The variance of the maximum likelihood estimator was estimated as the inverse of
the observed Fisher information; this statistic underestimated the true variance.
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5. Example and Simulation Results

Here the results of a Monte Carlo simulation study when p = 11; µ = 0, σ2
L =

0, 2, 4; and η2 = 0 : 0.25 : 4 are reported. The variance component, σ2
Bi

, of
the type B uncertainty was taken to be proportional to a χ2-random variable
with ν = 1, 4 or 12 degrees of freedom, σ2

Bi
∼ qχ2(ν), Eσ2

Bi
= qν. We took the

distribution of the within laboratory variances, σ2
i , to be the inverted gamma-

distribution 1/Γ(α, β) with parameters α = 2, β = 1, so that Eσ2
i = 1. The

sample means Yi were simulated as Yi = η +
√

σ2
L + σ2

i + σ2
Bi

Zi from a standard

normal sample Z1, . . . , Zp; the sample variances s2
i were taken to be realizations

of multiples of χ2-random variables, s2
i ∼ σ2

i χ
2(ni − 1)/(ni − 1).

We studied the mean squared errors (mse) of the unweighted mean of the
sample means, Ȳ ; the median, med(Y ); the Graybill-Deal estimator (??); the
version of Graybill-Deal estimator, GD0 which does not include σ2

Bi
, but is based

on the weights proportional to s−2
i ; the DerSimonian-Laird estimator (4.6); the

Mandel-Paule estimator (4.7); the version of the maximum likelihood estimator
(4.8); and the maximum likelihood estimator, ML which was implemented by a
modification of the iterative algorithm involving solutions of cubic equations for
σ2

i as described in Vangel and Rukhin (1999).

Table 1: The mean squared errors (mse) when n = 3, 10, σ2
L = 0, 2, 4, and

η2 = 0

n = 3 n = 10

σ2
L = 0 σ2

L = 2 σ2
L = 4 σ2

L = 0 σ2
L = 2 σ2

L = 4
Ȳ 1.18 1.37 1.56 1.11 1.30 1.48

med(Y ) 1.35 1.68 2.03 1.33 1.71 2.02
GD 0.79 1.09 1.39 0.76 1.07 1.37
GD0 4.29 4.92 5.62 1.64 2.29 2.60
DL 0.81 1.06 1.31 0.79 1.03 1.23
MP 0.81 1.07 1.31 0.79 1.04 1.24
W 0.76 1.06 1.26 0.73 0.88 1.17
ML 0.72 1.02 1.29 0.70 0.81 1.12

The results are collected in Table 1 when ni ≡ n = 3, 10; only results for
q = 3, ν = 4 are reported there. The increase in ν for a fixed product qν leads to
smaller mse, but also to smaller coverage probabilities. Table 1 contains the mean
squared errors of the studied eight estimators. Since all estimators have the bias
η, mse is the sum of η2 and the variance (which is the mean squared error when
η = 0.) For this reason Table 1 reports the results only when η = 0. Neither the
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median nor the version GD0 of the Graybill-Deal estimator were ever the best
in terms of the mean squared error, while the Graybill-Deal estimator, which
includes Type B uncertainty, the DerSimonian-Laird method, the Mandel-Paule
algorithm (which behaved very similarly to the DerSimonian-Laird method) sys-
tematically were among the best procedures. They did remarkably well compared
to the “golden standard” of the maximum likelihood procedure which is much
more computationally intensive. For small values of n these estimators are very
close to the maximum likelihood estimator, whose behavior is similar to that of
the Willink version of the maximum likelihood procedure (4.8).

Table 2: The mean squared errors (mse) for random n, σ2
L = 0, 2, 4, η2 = 0 and

their estimates via (4.10) and (4.11)

ν = 3, q = 4 ν = 1, q = 12

σ2
L = 0 σ2

L = 2 σ2
L = 4 σ2

L = 0 σ2
L = 2 σ2

L = 4

Ȳ 1.18 1.35 1.54 1.18 1.36 1.54
(4.10) 1.18 1.35 1.54 1.17 1.36 1.54

med(Y ) 1.25 1.62 1.97 0.68 1.15 1.54
(4.12) 1.65 2.09 2.46 1.13 1.58 2.02
GD 0.73 1.03 1.38 0.33 0.87 1.21

(4.10) 0.70 0.98 1.26 0.29 0.68 1.07
(4.11) 0.65 0.70 0.70 0.26 0.27 0.28
DL 0.76 1.00 1.24 0.32 0.68 0.93

(4.10) 0.75 0.98 1.20 0.32 0.61 0.85
(4.11) 0.85 1.02 1.21 0.38 0.61 0.85
MP 0.75 1.00 1.25 0.33 0.73 1.02

(4.10) 0.75 1.00 1.26 0.33 0.69 1.01
(4.11) 0.80 1.05 1.21 0.29 0.62 0.84

W 0.73 1.02 1.30 0.31 0.83 1.22
(4.10) 0.73 0.97 1.22 0.29 0.67 0.96
(4.11) 0.72 0.80 0.95 0.27 0.31 0.42
ML 0.73 0.96 1.19 0.31 0.64 0.89

(4.10) 0.70 0.94 1.19 0.27 0.61 0.88
(4.11) 0.70 0.95 1.10 0.26 0.61 0.88

These results also hold in the studied unbalanced cases. Table 2 gives the
simulated values of mse when the sample sizes of p = 11 laboratories are per-
mutations of integers from 3 to 13, q = 3, ν = 4, in the first three columns,
q = 1, ν = 12, in the last three columns, σ2

L = 0, 2, 4, η2 = 0. Their estimates via
(4.10) and (4.11), as discussed in Section 4, are also provided. Clearly (4.10) gives
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a much better estimate of the mse of the weighted means procedures than (4.11).
For the reason indicated above, the estimator GD0 was omitted in this Table as
well as in Figures 1 and 2 which depict characteristics of only five estimators.

Figure 1 displays the confidence coefficient of the intervals µ̂±2
√

V̂ ar(µ̂), for
these estimators when η2 = 0 : 0.25 : 4. The confidence coefficient of the interval
obtained from all estimators, except the median, fell below 0.60 for η2 = 4.

The average half-widths (standard errors) of exact 95%-confidence intervals
are depicted in Figure 2. They are increasing as η increases, but not fast enough
to compensate for the loss in confidence.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eta

cp

Figure 1: Plot of coverage probability of confidence intervals µ̂± 2
√

V̂ ar(µ̂) vs
η for five estimators (the continuous line corresponds to Ȳ , the line marked by
’o’ to med(Y ), ’*’ line to DL , ’+’ line to W, the diamonds line to ML.)
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Figure 2: Plot of standard errors of confidence intervals µ̂ ± 2
√

V̂ ar(µ̂) vs η

for five estimators (designations of lines are the same as in Figure 1 ).
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Figure 3: Plot of coverage probability of confidence intervals µ̂± 2
√

V̂ ar(µ̂) vs
β for the DerSimonian-Laird estimator (the continuous line corresponds to Ȳ )
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Figure 4: Plot of mean squared errors vs β for the DerSimonian-Laird estimator
and Ȳ

These facts confirm the deteriorating performance of the confidence intervals
for large bias component. Clearly, all characteristics are very influenced by this
parameter.

To investigate robustness of these procedures with regard to misspecification
of Type B error we evaluated the mean squared error and the confidence co-

efficient of the interval µ̂ ± 2
√

V̂ ar(µ̂), when one of the laboratories reports a
multiple βσ2

Bi
, β = 0 : 0.2 : 2, instead of the true type B uncertainty σ2

Bi
. The

corresponding results for the DerSimonian-Laird estimator (4.6) contrasted by
Ȳ are displayed in Figures 3 and 4 when η = 0. Both of these characteristics
are seriously affected by under-reporting of the type B uncertainty. Figure 5



408 Andrew L. Rukhin and N. Sedransk

shows the empirical distribution of the pivotal ratio, (µ̂ − µ)/
√

V̂ ar(µ̂), and its
approximation by a t-distribution with p − 1 degrees of freedom when η = 0.

−8 −6 −4 −2 0 2 4 6
0

0.05

0.1
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0.4

Figure 5: The histogram of the distribution of the pivotal ratio, (µ̂ − µ)/
√

δ0

and its t-density approximation.

For illustration, these techniques were implemented in the accelerometers key
comparisons study (CCAUV.V-K1) described in Section 2. Only the results for
the frequencies 40, 50 and 63Hz and single-ended accelerometers are given here.
Table 3 contains approximate confidence intervals obtained by techniques of Sec-
tion 4 applied to CCAUV.V-K1. As in the simulation study, the median and
the version GD0 of the Graybill-Deal estimator provide the least satisfactory
answers. The Graybill-Deal estimator, which includes Type B uncertainty, the
Mandel-Paule procedure and the DerSimonian-Laird method all give the same an-
swer which practically coincides with the PTB solution reported by von Martens
et el. (2002).

Table 3: The confidence intervals µ̂± 2
√

δ0 for eight estimators in CCAUV.V-
K1 study, frequencies 40, 50, 63 Hz

Ȳ med(Y ) GD GD0 DL MP W ML
0.12894 0.12884 0.12998 0.12886 0.12898 0.12898 0.12898 0.12898

± 0.00022 ± 0.00034 ± 0.00012 ± 0.00019 ± 0.00012 ± 0.00012 ± 0.00013 ± 0.00011
0.12896 0.12896 0.12999 0.12885 0.12899 0.12899 0.12895 0.12899

± 0.00016 ± 0.00054 ± 0.00010 ± 0.00014 ± 0.00010 ± 0.00010 ± 0.00013 ± 0.00010
0.12890 0.12886 0.12896 0.12886 0.12896 0.12896 0.12895 0.12896

± 0.00018 ± 0.00028 ± 0.00010 ± 0.00016 ± 0.00010 ± 0.00010 ± 0.00010 ± 0.00011
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6. Conclusions

Under the model (3.1) the considered estimators provide, on average, simi-
lar values for KCRV but with differing uncertainties. However, while weighted
means estimators profit from dependence on Type B uncertainty in terms of
stability when the epistemic errors are reported correctly, this dependence also
compromises the performance of these estimators when the Type B uncertainty
is misstated or when the variability inherent in the stated error is ignored.

Two particular circumstances could lend themselves to misstatement of Type
B uncertainty: (i) incorporation of “offsets” into NMI’s reported measurements
and (ii) differing evaluation of epistemic uncertainty by different scientists, even
under identical conditions, using the same equipment and procedures. “Offsets”
are standard adjustments (usually additive in the reporting scale for the measure-
ments) based on reproducible differences that are historically present between
NMIs without other apparent explanation. Scientists acknowledge these system-
atic differences by defining an offset to effectively “reset the scales to zero” for
the NMIs involved. Many scientists also recognize that an offset is known only
to a certain precision (i.e. has an associated uncertainty of its own.) The incor-
poration of offsets partially corrects for a bias that would otherwise be present,
but does so at the expense of additional uncertainty and/or residual bias.

The differences in the uncertainty budgets predominantly reflect epistemic
uncertainty discrepancies. By necessity, each NMI provides its own expert judg-
ment about its own measurements, i.e., the NMI’s own warrant of the nature of
its measurements. So the stated Type B uncertainty for each participant reflects
both the epistemic uncertainty for that participant’s measurements and also indi-
viduality of its expert opinion. Even for an identical measurement methodology,
experts can vary widely in their assessments although all uncertainty budgets for
inter-comparison encompass the same list of specified factors. The differences in
personal opinion about specific components or about their aggregation to yield
Type B uncertainty can result in wide dissimilarities. Thus, when the method
for calculating the KCRV depends heavily on epistemic uncertainty, NMIs with
apparently similar processes may contribute to the KCRV differently by virtue
of their diverse weights. A direct consequence of the failure to include in the
KCRV uncertainty calculations any representation of either the uncertainty of
a reported systematic effect (e.g. offset) could lead to substantial bias in the
KCRV. While the effect of the variation in a reported type B uncertainty is more
benevolent, still it is the potential misrepresentation of KCRV in the direction
of values reported by NMIs with the smallest stated epistemic uncertainty. The
Graybill-Deal estimator, especially its version GD0, which does not include σ2

Bi
,

is particularly prone to such a misrepresentation.
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In the “non-regular” case, where NMIs are actually divergent and model (3.1)
is not applicable, this consequence could be magnified, depending upon the diver-
gence of the NMIs and their relative values for (non-normal) type B uncertainty.
It is easy to conjecture that departures from Gaussian to asymmetric distribu-
tions, particularly with heavy tails, could further accentuate the influence of
NMIs stating smallest Type B uncertainties and yielding substantially under-
stated uncertainty for the KCRV. Consequently, a rigorous statistical approach is
even more important in the non-regular case.

Appendix

It suffices to prove (4.2) when
∑p

1 wi = 1. Then

E

p∑
1

wi(Yi − µ̂)2 =
p∑
1

wi

(1 − wi)2V ar(Yi) +
∑
k �=i

w2
kV ar(Yk)


=

p∑
1

wi

[
(1 − 2wi)V ar(Yi) +

∑
k

w2
kV ar(Yk)

]

=
p∑
1

wiV ar(Yi) −
p∑
1

w2
i V ar(Yi),

which is the desired identity.
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