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Abstract: A new rank-based test statistics are proposed for the problem
of a possible change in the distribution of independent observations. We
extend the two-sample test statistic of Damico (2004) to the change point
setup. The finite sample critical values of the proposed tests is estimated.
We also conduct a Monte Carlo simulation to compare the powers of the
new tests with their competitors. Using the Nile data of Cobb (1978), we
demonstrate the applicability of the new tests.
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1. Introduction

In practice, a collection of observations enjoying some common stochastic
properties is important for statistical inference. However, the observation char-
acteristics may vary over the observational domain. The analysis of such a change
is important in many scientific fields. For example, in quality control, it is of in-
terest to check if the production process is constant during the whole period of
time or it is changing over time. Also, this analysis of change includes; struc-
tural change in Economics, incidence of a disease in Epidemiology and the study
of archeological cites in Archeology. In statistical literature such problems are
called “change point”.

Many literature have been emerged focusing on the analysis of change point
problems. For review, we refer to Shaban (1980), Basseville and Benveniste
(1986), Csörgő and Horváth (1993), Csörgő and Horváth (1997) and Antoch,
Hušková and Jauršková (2001) and references therein, for classical analysis. In
Bayesian context, the reader should consult Zacks (1983), Broemeling and Tsu-
rumi (1987) and Jandhyala, Zacks and El-Shaarawi (1999).

Suppose that X1, ...,Xn is a sequence of independent random variables with
distribution functions F1, ..., Fn. In this article we are interested in testing the
null hypothesis of no change:

H0 : F1 = F2 = .... = Fn = F (1.1)
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against the at most one change point (AMOC) alternative hypothesis:

H1 : Fi =
{

F 1 ≤ i ≤ [nτ ]
G [nτ ] + 1 ≤ i ≤ n,

(1.2)

where F �= G are unknown distribution functions and τ ∈ [0, 1].
There are considerable research done in the area of rank inference for the

change-point problem. Lombard (1983) derives the asymptotic distribution for
some linear rank change point test statistics under small parameter perturbations.
Wolfe and Schechtman (1984) discuss a general nonparametric change-point in-
ference including the rank-based statistics. Aly, Csörgő, and Horváth (1987)
study rank processes and tests for the one change point problem. They proved
some important weighted approximations for the P-P plot, empirical and quantile
rank processes. Lombard (1987) was first to derive the asymptotic distribution
of a general functional linear rank test statistics in the change point setting. Aly
and Abd-Rabou (2000) discuss, theoretically and via simulation, some general
change point linear rank test statistics assuming that the sample size, n, is ran-
dom. Hušková (2004) proves weak invariance principles for some change-point
regression rank test statistics.

The aim of this paper is to propose linear rank test statistics for the change-
point problems in (1.2). These tests are extension of the Damico’s two sample
test statistics Damico (2004). The remainder of the paper is as follows. Section
2, presents the proposed rank test statistics for the at most one change point
(AMOC) alternative in (1.2). We also present the asymptotic distributions of
the proposed test statistics. Section 3 is devoted to two simulation studies. In
Section 3.1, the finite sample properties of the two proposed tests are assessed.
In Section 3.2, the power of the proposed tests are compared, empirically, with
Lombard’s test statistics Lombard (1987). Finally, in Section 4, the proposed
tests are applied to a real data set; the Nile data.

2. The Proposed Tests

Assume that F (·) and G(·) are two unknown, generally different, distribution
functions. Let X1, ...,Xm,Xm+1, ...,Xn be independent random variables such
that Xi, for 1 ≤ i ≤ m, has the distribution function F (·), and Xi, for m + 1 ≤
i ≤ n, has the distribution function G(·). Note that the problem in (1.2) is the
typical two-sample problem if the integer m = [nτ ] is known. However, if m is
unknown the more complicated problem, the change point problem, arises.

For the two sample problem, Damico (2004) suggests the use of the following
test statistic:

A =
m∑

i=1

∣∣∣∣
[

mRi

n + 1
+ 1

]
− i

∣∣∣∣ , (2.1)
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where [k] is the integer part of k and Ri = R(Xi), 1 ≤ i ≤ n, is the rank of Xi

among the sample X1, ...,Xm,Xm+1, ...,Xn. Damico reports a few cumulative
probabilities of the test in (2.1), when the two samples are of size m = 4 and
n − m = 6.

In the change point context, typically the value of m is unknown. This com-
plicates the problem and the Damico’s test can not be used in a straightforward
way. In this setting, we suggest the following test statistics:

Dn,1 =

√
12(n + 1)

n2
max

1<m≤n

∣∣∣∣∣
m∑

i=1

(
mRi − i

(n + 1)(m − 1)
− 1

2

)∣∣∣∣∣ , (2.2)

and

Dn,2 =
1
n

n∑
m=2

{√
12(n + 1)

n2

m∑
i=1

(
mRi − i

(n + 1)(m − 1)
− 1

2

)}2

, (2.3)

where Ri = R(Xi), 1 ≤ i ≤ n is as in (2.1). As in earlier researches we may sug-
gest to estimate the shift location m̂ by the point m at which Dn,1 is maximized.

Now we try to write the asymptotic distribution of the proposed test statistics
in (2.2) and (2.3) under the null hypothesis H0 in (1.1). We will follow the general
rank test scheme of Lombard (1987). Let φ be an arbitrary score function defined
on the interval (0, 1) and satisfying 0 <

∫ 1
0 φ2(u)du < ∞. For the sequence

X1, ...,Xn, define the rank score of Xi by

S(Ri) =
φ[Ri/(n + 1)] − φ̄

V
, for i = 1, 2, ..., n,

where

φ̄ =
1
n

n∑
i=1

φ[i/(n + 1)],

and

V 2 =
1

n − 1

n∑
i=1

{
φ[i/(n + 1)] − φ̄

}2
.

Lombard (1987) have shown that under the null hypothesis of no change, the
process {Bn(u); 0 ≤ i ≤ 1} defined by

Bn(u) =




n−1/2
∑k

i=1 S(Ri) k
n ≤ u < k+1

n , 1 ≤ k < n

0 u = 1 or 0 ≤ u < 1
n ,

converges in distribution to a standard Brownian bridge {B(u) : 0 ≤ u ≤ 1} as
n → ∞. We recall that the standard Brownian bridge is a Gaussian process with
zero mean and covariance structure as

E{B(u)B(ν)} = (u ∧ ν) − uν, 0 ≤ u, ν ≤ 1.
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Applying the above Lombard’s scheme to our test statistics in (2.2) and (2.3),
and using Theorem 5.5 of Billingsley (1968), we have the following results

Dn,1
dist.−→ sup

0≤u≤1
|B(u)| ,

and

Dn,2
dist.−→

∫ 1

0
{B(u)}2du,

where B(·) is a standard Brownian bridge.
Different percentiles for the limiting distribution of sup0≤u≤1 | B(u) | and∫ 1

0 {B(u)}2du can be found in Kiefer (1959) and Anderson and Darling (1952)
respectively.

3. Simulation Studies

In this section, simulation studies are used to evaluate the performance of the
proposed tests. The first subsection is devoted to estimating the critical values
of the proposed tests, Dn,1 and Dn,2. In the second subsection the focus is on
comparing the powers of the proposed tests with some competitors under different
alternative distributions.

3.1 Estimated critical values

In this Section we estimate through a Monte Carlo study the critical val-
ues of the proposed tests in finite samples. The sample sizes are chosen as
5, 10, 15, ..., 100, i.e. we have 20 different values of sample size n. For each sample
size n, we generate random permutations of the integers 1, 2, ..., n. In each case
we calculate the proposed test statistics Dn,1 and Dn,2 as in (2.2) and (2.3) re-
spectively, under the assumption of no change. This setting is replicated r times.
For each value of r, the obtained values for each statistic (Dn,1 and Dn,2) are
sorted and then the (1−α)th percentiles are obtained. The α values is chosen to
be 10%, 5% and 1%. Finally, the values of r are fixed at 500, 1000, 2000, 3000,
5000 and 10000.

The critical values of the proposed statistics Dn,1 and Dn,2, for r = 10000,
are displayed in Table 1 and Table 2 respectively. The results of the remaining
values of r are not reported for parsimony and because the qualitative conclusion
is the same. However, the results are more stable with higher values of r. The
asymptotic distributional values (nominal values) of the test statistics Dn,1 and
Dn,2, at each α, are included in Table 1 and Table 2. These values are corre-
sponding to n = ∞ on the bottom of each table. Also, the results in Table 1
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and Table 2 are depicted in Figure 1. The horizontal lines represent the nominal
critical values at each significance level α.
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Figure 1: The empirical critical values of the proposed tests, (a): the first test
Dn,1, (b): the second test Dn,2. The horizontal lines represent the appropriate
nominal critical values at each α

Table 1: Estimated critical values of Dn,1

α α

n 1% 5% 10% n 1% 5% 10%
5 2.5456 2.5455 1.9799 60 1.6496 1.3694 1.2462
10 2.5067 2.0889 1.8800 65 1.6458 1.3694 1.2279
15 2.2517 2.9053 1.7321 70 1.6386 1.3522 1.2301
20 1.9645 1.7386 1.5875 75 1.6407 1.3755 1.2249
25 1.8232 1.6033 1.4647 80 1.6556 1.3703 1.2326
30 1.7348 1.5347 1.4103 85 1.6225 1.3358 1.2134
35 1.6628 1.4681 1.3691 90 1.5929 1.3422 1.2035
40 1.6831 1.4552 1.3407 95 1.6228 1.3554 1.2183
45 1.7042 1.4188 1.2946 100 1.6369 1.3673 1.2270
50 1.6660 1.3749 1.2612
55 1.6238 1.3700 1.2461 ∞ 1.6280 1.3580 1.2330
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Table 2: Estimated critical values of Dn,2

α α

n 1% 5% 10% n 1% 5% 10%

5 2.5366 2.0136 1.7908 60 0.8832 0.5610 0.4256
10 1.9502 1.3617 1.0736 65 0.9046 0.5568 0.4160
15 1.4820 1.0204 0.7812 70 0.8400 0.5443 0.4121
20 1.2676 0.8699 0.6630 75 0.8559 0.5332 0.4010
25 1.1241 0.7306 0.5646 80 0.8518 0.5423 0.4121
30 1.0652 0.7091 0.5276 85 0.8433 0.5212 0.3941
35 1.0370 0.6390 0.4898 90 0.8154 0.5053 0.3777
40 1.0549 0.6219 0.4771 95 0.8664 0.5156 0.3961
45 0.9497 0.6138 0.4616 100 0.7920 0.5238 0.4012

50 0.9636 0.5920 0.4401
...

...
...

...
55 0.8640 0.5856 0.4496 ∞ 0.7435 0.4614 0.3473

Table 3: Estimated power percentage at α = 5%, G1(Z) = 1 − (1 − Z)β, 0 ≤
Z ≤ 1

n β m Dn,1 Dn,2 Ln,1 Ln,2

10 1.5 3 10.46 11.63 4.94 8.75
5 8.29 12.04 6.59 10.06

2.0 3 17.07 18.56 6.55 12.28
5 11.85 18.89 9.60 14.99

20 1.5 5 12.24 12.38 6.15 8.37
10 10.16 15.07 9.01 10.79

2.0 5 21.14 23.62 11.03 14.37
10 18.42 28.21 18.75 21.62

40 1.5 9 15.57 17.19 9.46 10.64
15 19.36 22.82 14.67 15.43
20 19.82 24.20 19.96 17.74

2.0 9 31.34 33.20 19.29 21.45
15 40.89 44.97 33.70 34.05
20 42.33 48.66 38.64 39.33

80 1.5 10 11.20 12.16 7.12 7.86
20 22.39 24.34 15.73 17.12
30 31.32 32.78 24.00 24.81
40 32.42 34.89 27.25 27.20

2.0 10 22.06 23.22 12.25 14.53
20 52.50 52.62 40.03 41.09
30 67.78 68.41 59.19 59.14
40 71.48 72.58 65.34 65.11
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Table 4: Estimated power percentage at α = 5%, G2(Z) = (2Z)β , 0 ≤ Z ≤ 0.5

n β m Dn,1 Dn,2 Ln,1 Ln,2

10 1.5 3 31.74 26.85 8.12 16.96
5 16.92 26.26 16.51 20.84

2.0 3 29.81 23.26 7.41 15.33
5 17.07 22.41 13.57 17.03

20 1.5 5 37.34 32.23 16.25 20.56
10 29.49 38.56 27.95 30.63

2.0 5 32.77 26.04 12.47 16.15
10 25.78 29.98 21.10 22.45

40 1.5 9 47.40 42.29 28.02 29.37
15 56.45 57.68 46.65 49.15
20 57.75 61.46 52.57 52.78

2.0 9 40.96 34.35 22.04 23.43
15 45.88 46.07 35.54 36.38
20 46.51 48.98 40.55 40.37

80 1.5 10 33.90 32.68 19.45 21.67
20 66.16 64.86 54.66 54.59
30 80.95 80.81 74.91 74.26
40 85.13 85.67 81.57 80.52

2.0 10 26.34 26.13 15.08 17.12
20 52.37 52.16 40.85 41.14
30 66.68 67.11 58.31 54.64
40 79.90 71.37 65.01 64.41

The simulation results show that the estimated critical values decrease as the
sample size n increase. As the value of sample size n increases, the estimated crit-
ical values converge to their corresponding asymptotic points (nominal values).
We noticed that the critical values converge faster to their nominal values when
the number of replication r increases. It is also noticeable that the estimated
critical values approach their asymptotic limits from above. Hence, the use of
these estimated quantiles in small samples seem to give slightly liberal tests.

The aim of the simulation is to ensure that the estimated critical values of the
proposed tests converge to their asymptotic distributional points. However, in
statistical inference, the results can serve as critical values of the proposed tests
at the corresponding sample size n and significance level α.
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3.2 Powers comparison

As a change point rank test statistics, Lombard’s test statistics are natural
competitors to our proposed test statistics and it is tempting to compare their
powers. The Lombard-type test statistics for the single abrupt change point
problem are given by

Ln,1 = max
1≤m≤n

∣∣∣∣∣
√

12(n + 1)
n2

m∑
i=1

(
Ri

n + 1
− 1

2

)∣∣∣∣∣ , (3.1)

and

Ln,2 =
1
n

n∑
m=1

{√
12(n + 1)

n2

m∑
i=1

(
Ri

n + 1
− 1

2

)}2

, (3.2)

Table 5: Estimated power percentage at α = 5%, G3(Z) = 1−2β(0.5−Z)β, 0 ≤
Z ≤ 0.5

n β m Dn,1 Dn,2 Ln,1 Ln,2

10 1.5 3 41.56 41.90 13.08 25.56
5 18.87 41.54 29.14 36.50

2.0 3 47.32 49.37 15.36 30.26
5 20.81 50.02 36.58 44.71

20 1.5 5 52.94 53.17 31.11 35.62
10 50.41 66.76 57.61 60.27

2.0 5 61.90 62.30 39.61 43.64
10 60.50 76.22 68.48 71.21

40 1.5 9 75.37 72.38 57.18 57.45
15 88.70 89.84 84.53 83.55
20 91.01 92.15 89.57 89.14

2.0 9 84.21 81.80 69.82 67.90
15 94.66 95.15 92.22 92.10
20 96.60 96.95 96.11 95.48

80 1.5 10 64.61 59.02 42.66 43.05
20 96.05 94.88 92.52 90.66
30 99.33 99.19 98.87 98.64
40 99.76 99.65 99.57 99.41

2.0 10 76.67 70.33 54.21 53.40
20 98.28 98.44 97.40 96.41
30 99.91 99.90 99.80 99.66
40 99.67 99.96 99.94 99.89
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Table 6: Estimated power percentage at α = 5%, G4(Z) = 1−2β(1−Z)β , 0.5 ≤
Z ≤ 1

n β m Dn,1 Dn,2 Ln,1 Ln,2

10 1.5 3 3.19 ( 9.67) 1.74 (17.31) 8.53 ( 8.70) 17.14 (12.60)
5 3.36 ( 6.47) 0.93 (20.93) 15.79 (15.54) 20.35 (20.43

2.0 3 5.05 ( 6.48) 2.63 (14.15) 8.29 ( 8.57) 16.23 (11.17)
5 4.68 ( 5.15) 1.73 (17.61) 13.89 (13.68) 17.17 (17.16)

20 1.5 5 2.87 (12.97) 2.15 (24.73) 14.90 (12.81) 19.01 (15.54)
10 4.41 (17.38) 3.91 (35.77) 27.77 (27.32) 30.10 (30.10)

2.0 5 4.62 ( 8.81) 2.54 (19.07) 12.46 (10.49) 16.47 (12.01)
10 5.44 (12.50) 3.15 (28.49) 20.96 (21.13) 22.45 (22.84)

40 1.5 9 12.01 (33.67) 12.39 (39.53) 28.91 (24.45) 30.35 (25.29)
15 25.00 (51.36) 24.49 (58.52) 46.67 (47.14) 46.52 (47.14)
20 29.68 (53.82) 29.11 (61.24) 52.52 (53.55) 52.94 (53.06)

2.0 9 10.47 (22.87) 9.65 (29.10) 22.40 (17.35) 24.18 (17.97)
15 18.06 (37.78) 17.66 (45.76) 36.01 (35.21) 36.71 (34.58)
20 22.11 (39.67) 19.56 (47.20) 39.98 (40.25) 40.40 (39.35)

80 1.5 10 11.53 (27.40) 12.71 (27.97) 19.59 (15.81) 21.92 (17.87)
20 47.71 (70.52) 39.64 (69.46) 55.02 (58.17) 54.44 (56.64)
30 63.83 (83.94) 61.51 (84.37) 74.00 (78.32) 73.41 (77.14)
40 72.95 (84.68) 70.73 (82.92) 81.53 (81.38) 81.25 (80.99)

2.0 10 9.10 (18.43) 9.66 (20.99) 14.81 (11.92) 17.13 (12.85)
20 29.56 (52.32) 28.26 (52.14) 41.00 (40.33) 41.56 (39.43)
30 46.42 (67.61) 44.26 (68.80) 57.92 (60.31) 57.21 (59.09)
40 54.07 (69.30) 51.15 (71.33) 65.32 (65.02) 64.16 (64.17)

where Ri, i = 1, ..., n is the rank of the observation Xi, i = 1, ..., n in the sample
X1, ...,Xn. In this section we compare the powers of our tests Dn,1 and Dn,2

with those of (3.1) and (3.2), through simulation. To do so, the null distribution
F (·) in (1.1) is selected to be a standard Uniform, U(0, 1). For the alternative
distribution G(·) in (1.2), we consider five distribution functions similar to those
of Stephens (1974). These alternative distributions are

G1(z) = 1 − (1 − z)β, 0 ≤ z ≤ 1,

G2(z) = (2z)β , 0 ≤ z ≤ 0.5,

G3(z) = 1 − 2β(0.5 − z)β , 0 ≤ z ≤ 0.5,

G4(z) = 1 − 2β(1 − z)β , 0.5 ≤ z ≤ 1,
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Table 7: Estimated power percentage at α = 5%, G5(Z) = 2β(Z − 0.5)β, 0.5 ≤
Z ≤ 1

n β m Dn,1 Dn,2 Ln,1 Ln,2

10 1.5 3 0.57 (22.67) 0.28 (35.08) 13.56 (13.72) 26.41 (22.12)
5 0.98 (11.81) 0.13 (38.16) 28.42 (28.68) 36.12 (35.92)

2.0 3 0.44 (28.34) 0.09 (41.11) 14.80 (15.35) 29.31 (25.67)
5 0.64 (13.03) 0.05 (46.80) 37.75 (35.53) 45.54 (44.49)

20 1.5 5 0.59 (36.28) 3.42 (50.50) 30.72 (26.82) 35.07 (31.35)
10 6.83 (43.32) 12.77 (66.47) 57.41 (56.33) 60.17 (59.99)

2.0 5 0.60 (47.49) 4.16 (61.48) 38.38 (34.85) 42.01 (39.48)
10 9.89 (53.79) 19.84 (75.62) 69.63 (68.01) 71.41 (69.96)

40 1.5 9 29.86 (75.04) 29.81 (75.65) 58.29 (58.78) 57.47 (57.01)
15 63.15 (90.16) 62.26 (92.03) 84.29 (87.40) 83.77 (85.91)
20 73.62 (90.58) 72.53 (92.92) 90.16 (90.19) 89.68 (89.52)

2.0 9 39.80 (87.59) 38.60 (86.35) 69.36 (74.26) 67.77 (70.46)
15 77.85 (96.06) 76.23 (97.13) 92.75 (95.03) 91.64 (94.13)
20 85.91 (96.35) 84.69 (97.03) 95.74 (96.13) 95.29 (95.50)

80 1.5 10 27.67 (67.26) 27.73 (60.41) 42.10 (38.95) 44.19 (41.86)
20 86.16 (98.81) 82.29 (97.86) 92.50 (96.71) 90.80 (94.64)
30 97.68 (99.81) 96.64 (99.75) 98.87 (99.60) 98.63 (99.32)
40 99.21 (99.84) 98.77 (99.78) 99.61 (99.72) 99.48 (99.53)

2.0 10 37.61 (83.11) 34.48 (72.43) 54.19 (52.59) 52.73 (52.38)
20 94.50 (99.93) 91.85 (99.71) 97.40 (99.56) 96.58 (98.64)
30 99.62 (99.98) 99.24 (99.96) 99.86 (99.94) 99.81 (99.90)
40 99.90 (99.98) 99.81 (99.96) 99.97 (99.96) 99.96 (99.89)

and
G5(z) = 2β(z − 0.5)β , 0.5 ≤ z ≤ 1,

where the constant β is to be taken 1.5 and 2.0. To calculate the powers, we simu-
late 10000 realizations of samples of size n = 10, under the alternative hypothesis
in (1.2). Then, we compute the four test statistics Dn,1,Dn,2, Ln,1 and Ln,2, in
each realization at random shift positions m. Then for each replication of the
10000 realizations we obtain the fraction of times, when each test statistic exceeds
its critical value at α = 5%. This whole simulation setting is then repeated for
samples of size n = 20, 40 and 80. the results of these simulations are reported in
Tables 3 – 7. In the last two tables (Tables 6 and 7) we also report, in brackets,
the powers of the four tests when the alternative distributions F := U(0, 1) and
G := Gi, i = 4, 5 are switched. That is F := Gi, i = 4, 5 and G := U(0, 1).
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Examining the entries of Tables 3, 4 and 5, we can see that the proposed new
tests are superior over their competitors in all cases. The second new test Dn,2,
have the highest powers as the shift position m move to the middle of the sample.
In Tables 6 and 7 the powers of the competitor tests were higher than the new
tests. But when we switched the alternative distributions, the proposed tests
outperform the competitors. This turning result indicates that the new proposed
tests works very well when the alternative is in the form of one-sided hypothesis,
i.e. F (x) ≤ G(x), for all x ∈ R or F (x) ≥ G(x), for all x ∈ R

4. Application to the Nile data

As an illustration we applied the new tests Dn,1 and Dn,2 to the Nile data
Cobb (1978). These data represent the annual water discharge from the Aswan
dam, for years 1871-1970, in units of 108 cubic metres. The data sequence is
plotted in Figure 2.
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Figure 2: Graphical representation of the Nile data

Visual inspection of the sequence in Figure 2 indicates that there may be a
change, in the sequence, around the year 1900.
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These data have been studied by many authors in the area of change point
problem. These studies indicate that there was a shift in the flow levels start-
ing from the year 1898. This shift in 1898 is attributed partly to the weather
changes and partly to the start of construction work for a new dam at Aswan.
Cobb (1978) assumes that the Nile observations are independent normal variables
with common variance for the whole sequence. He approximates the conditional
distribution of the maximum likelihood change point estimator of the data. The
results show that the year 1898 is the most likely change point. Cobb cites
independent meterological evidence that this change is real. Carlstein (1988)
proposes a nonparametric strongly consistent estimators for the change point lo-
cation. Applying that to the Nile data, the results show the change location is at
1898. Dümbgen (1991) introduces asymptotically valid confidence regions for the
change point location by inverting bootstrap tests. As an example, this method
was applied to the Nile data and found that the 95% bootstrap confidence sets
refer to the region given by the years [1896, 1899]. Zeileis, Kleiber and Krämer
(2003) apply a dynamic programming algorithm for the dating of the break points
to the Nile data and confirm the above results.

Applying the proposed tests Dn,1 and Dn,2 to these data, we have the following
results. The first test Dn,1 = 3.0098, which is significant at level less than 1%.
Also, we found that the the shift position is at m̂ = 28 (year 1898). For the
second test Dn,2 = 2.6758 which is also significant at level less than 1%. These
results are in agreement with all the previous findings.
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