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Abstract: Methods for testing the equality of two means are of critical
importance in many areas of applied statistics. In the microarray context, it
is often necessary to apply this kind of testing to small samples containing
no more than a dozen elements, when inevitably the power of these tests
is low. We suggest an augmentation of the classical t-test by introducing a
new test statistic which we call “bio-weight.” We show by simulation that
in practically important cases of small sample size, the test based on this
statistic is substantially more powerful than that of the classical t-test. The
power computations are accompanied by ROC and FDR analysis of the
simulated microarray data.

Key words: Differential expression, false discovery rate, hypotheses testing,
microarray data, Monte Carlo simulation, t-test.

1. Introduction

A central problem in microarray data analysis is identification of differentially
expressed genes, i.e., those genes whose expression intensities are significantly as-
sociated with the group label or covariate (Simon et al., 2004). In the univariate
case, a generally accepted way of statistical reasoning for solving this problem
would be through hypothesis testing. In general, this consists of formulating an
appropriate null hypothesis, constructing the criterion for discriminating between
the null and alternative, and computing the probability of committing Type I er-
ror, i.e., erroneously rejecting the null hypothesis when in fact it is true. In
microarray data analysis, this method of statistical reasoning stumbles over a
fundamental impediment which is termed in the literature the problem of multi-
ple testing (Dudoit et al., 2003). Because there is simultaneous testing of about
10,000 null hypotheses, it is quite possible by pure chance that a large number
of genes would be declared differentially expressed even when, in fact, the null
hypothesis (of no differential expression) is true. Furthermore, the genes erro-
neously declared significant may substantially outnumber the modest group of
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genes which are actually differentially expressed, thus providing a biologist with
numerous false leads for his follow up investigations.

Classical statistics usually deals with the situation when the number of param-
eters to be estimated is smaller, or even substantially smaller, than the number
of subjects in the study. This is not the case in microarray data analysis where
the expression profiles of many thousands of genes are usually estimated from ex-
periments with only several dozen subjects. This new statistical paradigm, often
referred to as “curse of dimensionality” (Donoho, 2000), stimulated p-values de-
velopment of a wide range of innovative ideas whose pros and cons are currently
being assessed to determine their practical usability (Efron et al., 2001; Kerr et
al., 2000). Quite frequently, the real-life situation is even worse than simply the
“curse of dimensionality.” Oftentimes, it is the “ultimate curse of dimensionality”
because only two or three microarrays are available for the analysis. Having at
our disposal a couple dozen samples, we may reasonably expect at least a vague
resemblance between our statistical estimates and their asymptotic counterparts.
However, we have to completely give up this hope with the sample size of only two
or three. We believe that this case of very small number of microarrays requires
special statistical treatment.

In this paper, we suggest a modification of the classical t-test which is specif-
ically designed to enhance the sensitivity for small number of microarrays. This
modification was first introduced by the author in (Rosenfeld et al., 2004) and
was based on the subject matter considerations which are briefly reproduced here.
Figure 1 represents the so called volcano plot which is frequently used in microar-
ray data analysis. In this plot, computed from the cDNA microarray experiments
with dyallil disulfide (Rosenfeld et al., 2004), the horizontal axis represents the
average (across replicates) log2(Ired/Igreen), where Ired and Igreen are the fluores-
cent intensities corresponding to the treatment and control groups, respectively.
The vertical axis corresponds to the negative decimal logarithm of the p-values
for the gene specific t-tests. This plot vividly illustrates a conflict between the
notions of the “biological” and “statistical” significance. The most statistically
significant genes (i.e., those corresponding to the smallest p-values) are located
at the top of the volcano plot. The leftmost and rightmost genes correspond to
a large absolute fold change. While “biologically” the genes with the largest fold
changes are of major interest, “statistically” these genes are usually not the most
significant, and vice versa. Application of both of these criteria usually produces
very few, if any, significant genes. In practice, the number of replicates is small,
often no more than five. In such cases, the power of the t-test is very low and
there is no compelling reason to follow the recommendations based solely on the
t-test p-values. To reconcile conflicting meanings of significance suggested by the
smallest p-values and the largest fold changes, we introduce a new test statistic
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that we call “bio-weight.” This test statistic, b̂ , is defined as the product of the
absolute fold change and negative decimal logarithm of the t-test p-value. The
concept of bio-weight is illustrated in Figure 1 where the pair of solid hyperbolic
lines represents the 99% quantile of the bio weight. Application of the bio weight
resolves, or at least mitigates, the conflict between the requirements of statistical
and biological significance. In contrast to the above mentioned two alternative
approaches, i.e., scoring significance by either the smallest p-values or the largest
fold changes, it pays attention to both. Extensive Monte Carlo simulation shows
that performance of the bio weight, measured by its sensitivity to presence of
the differentially expressed genes, is noticeably higher than that of the standard
t-test.
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Figure 1: Illustration of the concept of bio-weight

In this paper, we introduce the bio-weight test statistic in a more formal way
and present the results of comprehensive simulation study comparing its power
with the power of the classical t-test.

2. Statistical Model and Simulation Framework

As a starting point for our analysis, we adopt the Random Variance Model
(RVM) introduced in (Wright and Simon, 2003). In our experience, this model
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provides a flexible, mathematically tractable tool, capable of realistically captur-
ing various aspects of the microarray signal structure. We apply the RVM to
a class discovery problem where the only goal is to determine the set of genes
differentially expressed in the treatment versus control groups of arrays. Follow-
ing the RVM, we assume that the ratios of fluorescent intensities in these two
groups are lognormally distributed, thus producing the normal distribution of
log-ratios, xij = log(Iref

ij /Igreen
ij ) , where i and j are the indices of arrays and

genes, respectively. We further assume that the gene-specific variances of these
normal distributions, σ2

j , are not identical for all the genes but are considered
themselves as random variables drawn from a suitably selected probabilistic dis-
tribution. Although many ways are conceivable to characterize variability of the
gene-specific variances, we follow Wright and Simon, 2003, in their choice of the
“inverse gamma” model. That is, we assume that σ−2

j are gamma-distributed
with parameters α (“shape”) and θ (inverse “rate” ). Under the above formu-
lated assumptions, joint distribution of any randomly selected x from xij and y
from yj = σ−2

j is expressed as follows

H(x, y) =
√

y

1π
e−

x2y
2

1
Γ(α)θα

yα−1e−
y
θ (2.1)

A nice property of distribution (2.1) (apparently not noticed by Wright and
Simon, 2003) is that marginal distribution of x, obtained by integration of H(x, y)
over y, is reduced to the Student’ s t-distribution. More specifically, the marginal
distribution of x

√
αθ is t-distribution with 2α degrees of freedom. This finding

may be effectively used for estimating parameters α and θ from the data at
hand. Figuratively speaking, here the “blessing of dimensionality” (Donoho,
2000) comes into play because now tens of thousands of gene expressions may be
lumped together for estimating only two parameters. To this end, we first recall
that the variance, µ2, and kurtosis , γ4, of the t-distribution with 2α degrees of
freedom are expressed as (Armitage and Colton, 1998, p.4396):

µ2 = [(α − 1)θ]−1; γ4 = 3(α − 2)−1µ2 (2.2)

Substituting the estimates µ̂2 and γ̂4 into equations (2.2), we obtain

α̂ = 2 +
3
γ4

; θ̂−1 =
(

1 +
3
γ4

µ̂2

)
(2.3)

Simulation experiments with typically 10,000 genes, 3 to 10 replicates and 1,000
Monte Carlo repetitions reveal very high accuracy of these estimates. It is of par-
ticular importance to have an unbiased estimate for the combination α̂θ̂ because,
if the RVM indeed provides an adequate description of the microarray data, then
x
√

α̂θ̂ is expected to be t-distributed with 2α̂ degrees of freedom. As



Detection of Differentially Expressed Genes 455

Table 1: Estimation of parameters of parental gamma distribution. α is the
shape parameter used in simulation, α̂ and θ̂ are the parameters estimated
through equations (2.3)

α

2.5 3 4 5 8 12 20

α̂ 2.65 3.08 4.06 5.04 8.06 12.2 20.5
(α̂θ̂/αθ)1/2 0.984 0.995 0.998 1.000 1.000 1.000 1.000
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Figure 2: Left panel: empirical distribution of pooled log-ratios. Right panel:
QQ-plot empirical vs. theoretical t-distributions.

an example, Table 1 shows the results of computation of α̂ and
√

α̂θ̂ as functions
of the shape parameter used in simulation (10,000 genes, 3 replicates). As seen
from this Table, parameters estimated from the model are always very close to
those used in simulation, thus corroborating high accuracy of estimating equa-
tions (2.3).

An important question associated with RVM is this: “How successful is this
model in representing the real-world data?” Figure 2 shows an example of fitting
RVM to the dataset from the above cited DADS study (Rosenfeld et al., 2004). In
this example, the kurtosis and number of degrees of freedom of the approximating
t-distribution are found to be 5.3 and 4.2, respectively. The Q-Q plot in Figure
2 compares empirical quantiles of the pooled log-ratios (i.e., all the xij ) and
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theoretical quantiles of the t-distribution with the parameters estimated as in
(2.3). As seen from this plot, there is a good agreement between the RVM model
and the data observed in the DADS experiment.

Another useful property of the RVM is its ability to correctly capture
heteroscedasticity of the microarray signal, i.e., dependence of the between-
replicates variability on the strength of the microarray signal. Figure 3 shows
the scatter plots and regression lines in the model σi = A + B log2(Ired

i /Igreen
i )

for the observed (left panel) and simulated (right panel) data. Again, a remark-
ably good agreement between them serves as additional evidence of adequacy of
the RVM.
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Figure 3: Heteroscedasticity of microarray signal. Left panel: observed in
DADS experiment. Right panel: RVM model for DADS data

In this work, the RVM has been used as the basis for simulation experiments
with the bio-weight test statistic. The simulation model is controlled by three
parameters: number of genes, N , number of replicates, n, and shape paramete, α,
in the “inverse gamma” model for the variance variability. The scale parameter,
θ, is of no particular importance and without loss of generality may be conve-
niently set to α−1, in which case expectation of the inverse variance is always
equal to 1. Because the expectation in the gamma model is αθ and the vari-
ance is αθ2, the condition α � 1 corresponds to low gene-to-gene heterogeneity
of variances. We will further refer to this case as “weak fluctuations.” So far,
our experience with the RVM model has been limited to fitting the DADS data,
where degrees of freedom of the pooled t-distributions were always between 4 and
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5 (corresponding to 2 ≤ α ≤ 2.5), thus covering the range of weak fluctuations.
It is our perception that the case of weak fluctuations is the most representative
in practical perspective. However, in simulation it is quite possible to consider
also the case of “moderate fluctuations,” 1 ≤ α ≤ 2, when standard deviation
of variance is comparable to its expectation, and even the case of “strong fluc-
tuations,” α < 1, when standard deviation of variance is much greater than its
expectation.

3. Definition and Power of the Bio-weight Test Statistic

To introduce a formal definition of the bio-weight test statistic, let xij =
log2(Ired

ij /Igreen
ij ), where the indices i and j denote the microarray and gene labels,

respectively. We first perform the sequence of gene-by-gene one-sample two-
sided t-tests and obtain the corresponding fold changes, R̂j , and p-values, p̂j. At
this point, we assume that the t-statistics are t-distributed with (n − 1) degrees
of freedom, where n, as before, denotes the number of microarrays. Next, we
pool all the xij together, compute the variance, µ̂2, and kurtosis, γ̂4, for the
pooled sample, estimate α̂ and θ̂ from equations (2.3), and create the global scale
parameter, σ̂g = (α̂θ̂)−1/2. Having performed all these preparatory steps, we
compute the set of gene-specific statistics, b̂j = −|R̂j | log(pj)/σg, which we call
“bio-weight.” This test statistic is used as a new score of gene significance.

Table 2: Powers of the t-test and bio-weight (b) for normal population. n is
the sample size.

n R0

1 2 3 4 5

t b t b t b t b t b

2 0.053 0.137 0.179 0.632 0.262 0.932 0.336 0.995 0.437 1.000
3 0.104 0.235 0.466 0.857 0.732 0.995 0.921 1.000 0.972 1.000
4 0.164 0.458 0.724 0.949 0.968 1.000 0.999 1.000 1.000 1.000
5 0.399 0.546 0.910 0.986 0.998 1.000 1.000 1.000 1.000 1.000
6 0.505 0.635 0.971 0.997 1.000 1.000 1.000 1.000 1.000 1.000
7 0.586 0.690 0.991 0.999 1.000 1.000 1.000 1.000 1.000 1.000
8 0.677 0.774 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
9 0.739 0.811 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 0.796 0.856 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

In order to demonstrate the superior power the b̂-statistic, we first consider
performance of the b̂-statistic applied to each gene independently, much in the
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same manner as we usually use in the gene-by-gene t-testing. The only difference
we set up is that in each Monte Carlo repetition we generate our samples with
different variances independently drawn, in accordance to RVM, from the inverse
gamma population. In each Monte Carlo cycle, we test the null hypothesis R = 0
against the alternative|R| ≥ R0. Table 2 shows power of the bio-weight test as a
function of R0 in comparison with the power of the standard one sample t-test,
each at significance level 5%. As seen from this Table, power of the bio-weight is
substantially higher than that of the t-test if the sample size is small and/or the
shift parameter R0 is small. Typically, 1,000 repetitions have been used in these
simulations. Examples in Tables 2 and 3 are computed with α = 2.

Table 3: Powers of the t-test and bio-weight (b) for gamma population with
shape=2. n is the sample size.

n R0

1 2 3 4 5

t b t b t b t b t b

2 0.050 0.138 0.149 0.675 0.217 1.000 0.295 1.000 0.379 1.000
3 0.079 0.220 0.344 0.992 0.641 1.000 0.802 1.000 0.938 1.000
4 0.099 0.345 0.652 1.000 0.917 1.000 0.981 1.000 0.997 1.000
5 0.181 0.492 0.880 1.000 0.990 1.000 0.999 1.000 1.000 1.000
6 0.318 0.644 0.967 1.000 1.000 1.000 1.000 1.000 1.000 1.000
7 0.443 0.728 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000
8 0.532 0.801 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
9 0.692 0.874 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 0.798 0.925 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

As mentioned above, it is generally accepted in microarray data analysis that
the gene-specific log-ratios of fluorescent intensities are distributed normally. It
may be noted, however, that this assumption is not self-evident, and often is
difficult to validate due to lack of replicates and possible heterogeneity of vari-
ances. For this reason, it is of some interest to investigate the robustness of the
bio-weight test statistic with respect to deviations from normality. To this end,
we no longer assume that the gene-specific t-statistics are t-distributed; however,
we still use the same expression for the b̂- statistic. Table 3 shows the results of
power computations for the case when the null and alternative samples are both
drawn from a highly skewed gamma distribution with shape parameter 2 (shifted
on R0). Comparison of Tables 2 and 3 shows that generally the power of the
b̂- statistic not only does not decrease due to non-normality but in some cases
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becomes even slightly greater. On the contrary, the power of the standard t-
test is somewhat diminished by the non-normality, thus making the comparative
benefits of the bio-weight even more valuable.

4. Application of the Bio-weight to Detection of Differentially Ex-
pressed Genes

Higher power of the bio-weight test naturally translates into a higher sensitiv-
ity in detection of differentially expressed genes. After selection of the significance
score, two main strategies in the search for such genes are usually employed. In
the first strategy, we fix a certain number of genes with top scores and try to
evaluate the error rate associated with this selection. The second strategy con-
sists of fixing the error rate and declaring significant all the genes compatible
with this rate. Obviously, success of both strategies depends on actual pres-
ence and magnitude of the “genomic signal” in the microarray data at hand, i.e.,
on the number of differentially expressed genes and their average fold change.
In (Rosenfeld et al., 2004) we have developed a simulation model mimicking a
real-life experiment which takes into consideration non-normality of the cDNA
fluorescent log-intensities. Despite this non-normality, we found that the differ-
ence between the red and green log-intensities, i.e., log-ratio, turned out to be
very close to normal, in agreement with what is commonly assumed in microarray
data analyses. To illustrate the core advantages of the bio-weight, we adopt this
somewhat simplified way of reasoning and accept the assumption of normality of
log-ratios, and the RVM as the simulation platform. Suppose that there are m/2
of over- and m/2 of under-expressed genes among the total of N genes printed
on the microarrays we analyze. We will use the abbreviation AFC to denote the
Average (absolute) Fold Change. As an error control, we use the true positive
fraction (TPF) and false positive fraction (FPF) enabling us to display the results
in the form of receiver operating characteristic (ROC) curves. Figure 4 depicts
one such curve computed for AFC=3 and sample size 3. As shown in this Figure,
if we fix the FPF on the level 5%, then the probability to detect significant genes,
measured by TPF, is almost twice as large for the bio-weight test as compared to
the t-test. Summary of all results of this kind, computed for multiple AFC and
sample sizes, is presented in Table 4. These results suggest that in the case of a
small number of replicates, the bio-weight test is tangibly more powerful than the
t-test and provides a higher probability to detect differentially expressed genes.
For example, if the AFC of the differentially expressed genes is about 3 and the
number of replicates is 3 then the t-test selection offers only ∼ 29% probability
of recovering those genes, whereas the bio-weight test increases this probability
to 54%.
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Figure 4: ROC curves for selecting significant genes: dashed line: t-test; solid
line: bio-weight

We now consider the second of the aforementioned strategies for detecting the
differentially expressed genes, i.e., the one where the error rate is a priori fixed but
the number of genes to be discovered is unknown. In this situation, an appropriate
measure for the error control is False Discovery Rate (FDR), i.e., proportion of
the genes erroneously declared significant among all the genes declared significant
(Dudoit et al., 2003; Benjamini and Hochberg, 1995; Benjamini and Yekutieli,
2001; Hsueh et al., 2003; Kwong et al., 2002). Among several techniques for
implementing the FDR principle, the Benjamini-Hochberg procedure (BH/FDR)
has recently won the widest popularity due to its computational simplicity and
ease of interpretation. Transplanted into the genomic context, the BH/FDR
procedure controls expectation of the proportion of false discoveries among the
genes declared significant. According to this procedure, in order to obtain the
subset of significant genes from the experiment at hand, several simple steps
should be performed: a) obtain the gene-specific p-values; b) arrange the p-
values in ascending order; c) find the subset of smallest p-values satisfying the
inequality, p(i) ≤ FDR(i/N), where p(·) are the ordered p-values and FDR is the
pre-specified desirable false discovery rate; d) declare all the corresponding genes
significant. Performance of the BH/FDR procedure strongly depends on the
strength of genomic signal (i.e., AFC), on the number of replicates available for
the analysis, and on the power of the test employed for the p-value computation.
Figures 5 and 6 illustrate the BH/FDR procedure graphically. In both cases, 100
genes were generated to be truly differentially expressed. In Figure 5, we show
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Table 4: True positive fractions (TPF) for two methods of selecting significant
genes: t-test (first entries) and bio-weight test (second entries). False Positive
Fractions (FPF) fixed at the 5% level. Total number of genes 1,000 with 50
truly differentially expressed.

AFC Number of arrays

2 3 4 5 6 7 8 9 10

1.2 0.042 0.052 0.069 0.073 0.085 0.093 0.101 0.119 0.126
0.049 0.063 0.081 0.085 0.098 0.107 0.114 0.133 0.138

1.5 0.057 0.100 0.132 0.199 0.228 0.268 0.329 0.350 0.386
0.105 0.170 0.195 0.270 0.228 0.323 0.380 0.390 0.424

2.0 0.085 0.204 0.286 0.367 0.451 0.497 0.540 0.571 0.609
0.225 0.366 0.434 0.480 0.528 0.567 0.593 0.612 0.646

2.5 0.099 0.244 0.370 0.466 0.574 0.634 0.638 0.669 0.696
0.323 0.453 0.536 0.578 0.648 0.685 0.679 0.704 0.724

3.0 0.134 0.288 0.436 0.555 0.645 0.657 0.714 0.728 0.743
0.421 0.537 0.592 0.655 0.699 0.707 0.748 0.754 0.766

5.0 0.161 0.404 0.631 0.707 0.739 0.778 0.796 0.808 0.820
0.563 0.673 0.737 0.768 0.790 0.807 0.824 0.827 0.838

10.0 0.245 0.600 0.710 0.769 0.811 0.854 0.857 0.866 0.886
0.710 0.793 0.808 0.823 0.848 0.875 0.878 0.884 0.897

the ordered p-values and volcano plot for the case of t-testing. In this case, due
to low sensitivity of the t-test for small sample size, the number of genes declared
significant is small and contamination by false discoveries is high. In addition,
because the slant straight line separating the rejection and acceptance regions
cleaves the manifold of p-values at a low angle, there is a large uncertainty in
the number of the rejected null hypotheses. In the example in Figure 5, 17 genes
are declared significant with only 12 of them being true discoveries. Because
the acceptance-rejection borderline is blurred, the standard error of the number
of true discoveries is fairly large, as high as 8. A drastically different picture
is presented in Figure 6 where the results of computations with the bio-weight
test are shown (see Appendix for technical details of the p-value computation).
High sensitivity of the bio-weight testing results in 89 genes declared differentially
expressed with 74 of them being true discoveries. The separation between the
rejection and acceptance regions is well defined, and as a result, the standard error
of the number of discoveries is as low as 4.6. Table 5 summarizes all the findings
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of this kind for multiple sample sizes and fold changes. Upon examination of the
results presented in this Table, we may draw the conclusion that for small sample
sizes, the bio-weight test is vastly superior to the t-test. Even for a comparatively
large sample size, such as 20, there is still some advantage of using the bio-weight
test rather than the t-test.
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Figure 5: Performance of BH/FDR using t-test. Left panel: ordered p-values;
right panel: truly differentially expressed genes (open circles), BH/FDR dis-
coveries (crosses), and true discoveries (crossed circles)

5. Discussion

Apart from purely statistical considerations, we may also suggest some sub-
ject matter arguments in favor of using the bio-weight as a measure of significance
of differentially expressed genes. These arguments come from the consideration of
validation. Any instrument used for the purpose of validation always has its own
limitations. For example, the genes that are declared highly significant in a mi-
croarray experiment may turn out to be intractable for an independent validation
in a different experimental setting due to a very small over- or under-expression.
On the other hand, the validation instrument may not have certain drawbacks
inherent in the microarray technology, for example gene-to-gene variations of the
binding affinity (Held et al., 2003), thus being able to reveal the features not
observed in the microarray setting. Currently, the most common experimental
methodology for validating the microarray data is the quantitative reverse
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Table 5: Numbers of true discoveries vs. sample size and fold change. Total
number of genes 10,000 with 100 of truly differentially expressed. Two methods
of selecting significant genes: t-test (first entries) and bio-weight test (second
entries).

# replicates Fold change
2 3 4 5

#true st.err #true st.err #true st.err #true st.err

2 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
0.00 0.0 1.00 0.9 4.80 2.8 16.3 7.6

3 0.00 0.0 0.00 0.0 0.00 0.0 0.10 0.3
0.50 0.9 1 3.3 5.2 2 9.5 6.8 41.0 6.6

4 0.00 0.0 0.10 0.3 0.10 0.3 0.30 0.7
0.80 1.1 32.9 4.9 48.0 4.6 52.9 4.5

5 0.00 0.0 0.80 1.3 1.50 2.9 3.90 4.0
5.10 4.2 41.1 4.6 52.5 5.4 61.9 4.6

6 0.00 0.0 3.10 2.5 14.2 11. 29.7 6.7
1 4.4 4.7 47.0 5.4 61.7 6.2 66.0 2.9

7 0.70 0.8 11.4 5.8 37.2 5.5 46.1 8.6
28.8 5.9 52.8 4.8 61.8 6.0 69.1 6.5

8 1.40 2.0 31.2 8.4 45.8 6.1 56.4 3.5
30.7 5.2 56.3 6.0 65.8 5.5 71.9 4.1

9 5.40 4.7 37.4 6.6 56.5 3.3 64.6 5.2
33.4 4.8 58.3 4.7 67.5 3.9 74.5 3.8

10 14.3 5.5 48.2 3.6 64.7 5.4 65.3 4.5
38.0 3.3 61.5 2.7 74.0 4.1 73.7 4.8

20 5 7.0 6.4 70.1 6.5 77.6 5.0 79.3 5.3
64.0 4.3 73.3 5.6 82.3 4.0 82.3 4.6

transcriptase polymerase chain reaction (q-RT-PCR) (Rajeevan, 2001). A ma-
jor limitation of the q-RT-PCR is the necessity to keep the amplification curve
within the exponential growth limits (Tichopad et al., 2003). These limits, as
well as the PCR amplification efficiency, are generally unknown and often require
sophisticated algorithms and additional calibration efforts to reduce the errors in
quantitation (Meijerink et al., 2001). Importantly, the genes with relative abun-
dances too close to 1 are not reliably discernable by q-RT-PCR. Therefore, the
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genes declared significant solely because of smallness of their t-test p-values in
the microarray setting have little chance to be independently validated due to
too low over- or under-expression. As a result, an experimental biologist faces
a difficult choice between the sole reliance on the microarray data on one hand,
and relaxing the requirements of statistical significance in exchange for higher
probability of independent validation on the other hand. The bio-weight crite-
rion attempts to reconcile these conflicting requirements and detect those genes
which are the most likely candidates for follow up validation. These intuitive
considerations are supported by direct numerical simulation. A simple stochas-
tic model for simulating PCR amplification and subsequent quantitation of the
initial (i.e., before amplification) log ratios has been suggested by the author in
(Rosenfeld et al., 2004.) This model is constucted in such a way as to produce
realistic behavior of the amplification curves and PCR amplification efficiency.
Numerical simulation shows that for small number of arrays, there is a greater
overlap between the PCR and bio-weight predictions in comparison to that of the
PCR and t-test.

The method based on estimating equations (2.3) may be viewed as an al-
ternative method for fitting the RVM. In a sense, it is complimentary to that
proposed in (Wright and Simon, 2003) where model fitting was based on the
distributional properties of σ2

j . Although the cautionary notes in (Wright and
Simon, 2003) toward utilization of the method of moments for fitting RVM are
quite reasonable, we found that the estimates (2.3) are highly reliable and literally
indistinguishable from those produced by the maximum likelihood method. In
addition, they provide an additional insight into the model structure and simple
rules for controlling the simulation process.

As mentioned above, all the simulations summarized in this paper have been
performed for the case of “weak fluctuations.” We believe that it is the most
important case from the practical standpoint. However, we have also performed
limited simulations to explore the cases of “moderate” and “strong” fluctuations,
i.e., the cases where the standard error of the gene-to-gene variability of σ2

j is com-
parable or greater than its expectation. A surprising result yet to be properly
understood is that sensitivity of the bio-weight test statistic to the presence of
differentially expressed genes remains generally intact. A preliminary explanation
is that the misclassification error caused by an additional source of noise moves
significant and insignificant genes in both directions across the borderline sep-
arating the rejection and acceptance regions, thus approximately compensating
for their totals. A detailed account of these analyses is planned to be published
in future.
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6. Summary

We have suggested a modification of the classical t-test specifically designed
to enhance sensitivity of detection of differentially expressed genes in microar-
ray data analysis. This modification, termed as “bio-weight,” is shown to have
higher statistical power compared to the standard t-test in the microarray set-
ting. Application of the bio-weight is particularly useful in the situations when
the number of microarrays available for the analysis is below a dozen. It is shown
that the bio-weight testing is more robust with respect to deviation of samples
from normality compared to the standard t-test. ROC analysis shows that for a
fixed false positive rate, the bio-weight approach offers a noticeably higher true
positive rate than that of the standard t-test. It is also demonstrated that appli-
cation of the bio-weight testing allows one to substantially improve performance
of the Benjamini-Hochberg False Discovery Rate procedure for detection of the
differentially expressed genes.
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Appendix. Computation of p-values for the Bbio-weight Test Statistic

It does not seem possible to analytically derive distribution of the bio-weight
test statistic, b̂; however, it is not a difficult task for computational methods.
Examination of the distributional shapes of b̂ for various sample sizes suggests
that they may be closely approximated by the gamma distribution upon appro-
priate selection of the parameters. We apply a computational approach in which
we estimate these parameters by minimizing the mean least square differences
between exact quantiles of the bio-weight and theoretical quantiles of the gamma
distributions. Although any set of quantiles may be used in our procedure, we are
especially concerned with precise representation of the distributional tails, i.e.,
the domain where the cumulative distribution function is greater than, say, 80%.
The so called “smooth nonlinear local minimizer subject to bound constrained
parameters” (nlminb) of S-PLUS is used for parameter fitting (Gay, 1983). In
these computations, the sample size (number of replicates) varies from 2 to 10,
and the shape parameter, α, in the parental gamma distribution varies from 2
to 15, thus covering the entire range of weak fluctuations. The results of these
computations are the shape, A , and rate, Θ−1, of the gamma distribution best
representing the tails of the bio-weight distribution. Table 6 shows parameters
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Figure 6: Performance of BH/FDR using the bio-weight. Left panel: ordered p-
values; right panel: truly differentially expressed genes (open circles); BH/FDR
discoveries (crosses) and true discoveries (crossed circles)

Table 6: Parameters shape, A(n, α), and rate, Θ−1(n, α) of the gamma distri-
bution approximating the tail distribution of bio-weight.

α n = 2 n = 10

shape rate shape rate

2 0.164 0.57 0.144 0.89
3 0.266 0.87 0.194 1.19
4 0.307 0.99 0.215 1.31
5 0.325 1.05 0.225 1.38
6 0.336 1.08 0.231 1.42
7 0.343 1.10 0.236 1.45
8 0.349 1.12 0.241 1.47
9 0.355 1.14 0.244 1.50
10 0.361 1.16 0.247 1.53
11 0.366 1.18 0.251 1.55
12 0.372 1.20 0.255 1.58
13 0.378 1.22 0.259 1.60
14 0.383 1.24 0.263 1.63
15 0.389 1.26 0.266 1.66
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A(n, α) and Θ(n, α) as the functions of α for n = 2 and n = 10. It has been
found that the dependencies A(n, α) and Θ(n, α) are perfectly linear in n; hence,
to save page space, we provide these parameters only for n = 2 and n = 10.
Table 6 is intended to be used as follows. If the task is simulation then n and
α serve as input parameters, therefore the approximating gamma distribution
for representing the b̂statistic is γ(x|A(n, α),Θ(n, α)). If the task is the analysis
of empirical data, then we first estimate α̂ according to the first equation (2.3)
and then use Table 6 for selecting an appropriate γ(x|A(n, α),Θ(n, α)). Figure
7 shows an example of the histograms and QQ-plots comparing quantiles of the
empirical distribution of bio-weight to the theoretical quantiles of the gamma
distribution fitted using the above described procedure. As seen from this figure,
gamma distribution provides a very good approximation, especially on the tail,
what is particularly important for accurate computation of p-values.

approximation of bio-weight distribution by gamma
5 replicates

shape=0.349; rate=1.48
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Figure 7: Histogram of the bio-weight distribution. QQ-plot compares empiri-
cal and theoretical quantiles of bio-weight distributions
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