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Abstract: Accelerated degradation tests (ADTs) can provide timely relia-
bility information of product. Hence ADTs have been widely used to assess
the lifetime distribution of highly reliable products. In order to properly
predict the lifetime distribution, modeling the product’s degradation path
plays a key role in a degradation analysis. In this paper, we use a stochastic
diffusion process to describe the product’s degradation path and a recursive
formula for the product’s lifetime distribution can be obtained by using the
first passage time (FPT) of its degradation path. In addition, two approxi-
mate formulas for the product’s mean-time-to-failure (MTTF) and median
life (B50) are given. Finally, we extend the proposed method to the case of
ADT and a real LED data is used to illustrate the proposed procedure. The
results demonstrate that the proposed method has a good performance for
the LED lifetime prediction.

Key words: Accelerated degradation test, degradation test, first passage
time, stochastic diffusion process.

1. Introduction and Summary

Nowadays, many products are designed and manufactured to function for
a long period before they fail. Hence, determining product reliability is a great
challenge to manufacturers of highly reliable products with only a relatively short
period of time available for internal life testing. Although the techniques of
censoring and/or accelerating the life by testing at higher levels of stress may
help, they offer little help for really highly reliable products. The main reason
is that it is rather difficult to obtain enough time-to-failure data to estimate
product’s lifetime efficiently. Under this situation, an alternative approach is to
collect the “degradation” data at higher levels of stress for predicting a product’s
lifetime at a certain use-stress level. Such an experiment is called an accelerated
degradation test (ADT).

Nelson (1990), Meeker and Escobar (1998), and Chao (1999) reviewed the
degradation literature, surveyed its wide applications and described statistical
methods for ADT models. Numerous models have been developed and applied
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to some specific degradation tests. Chang (1992) analyzed two-variable accel-
erated degradation data of a specific power supply. Tseng, Hamada and Chiao
(1995) presented a case study of improving the reliability of fluorescent lamps.
Lu, Park and Yang (1997) derived linear model for hot-carrier-induced degrada-
tion of metalized and oxidized semiconductors. Yu and Tseng (1998) proposed
an on-line stopping procedure for determining an appropriate termination time
for an ADT of light emitting diode (LED) product. Meeker, Escobar and Lu
(1998) proposed mixed effects model to describe the degradation paths of an
ADT and the results are applied to the device-B Power-output data. Shiau and
Lin (1999) derived a nonparametric model for describing degradation of LED
products. Other important research applications of degradation models are in
the areas such as micro-electronic components, the laser diode, food and drugs,
metals fatigue testing, plasma display panels, liquid crystal display and digital
light processing projectors and other dependable systems.

The performance of an ADT, obviously, strongly depends on the appropriate-
ness of the modeling of its degradation path. A typical degradation path consists
of mean degradation curve and its error term (measurement error). There are
two well-known approaches in the literature. First, the mixed effects model is one
of the most popular approaches in degradation analysis (Meeker et al., 1998, and
Bae and Kvam, 2004). In order to describe the unit-to-unit variations of the test
units, the unknown parameters of mean degradation path were described in terms
of the mixed (or random) effects. Generally speaking, to find the maximum like-
lihood estimates (MLEs) of the unknown parameters, the mixed effects model is
computationally intensive. Although several approximate procedures have been
proposed in the literature (Bae and Kvam, 2004) to release computational ef-
forts of complex likelihood function, these procedures do not always guarantee
that the precise parameter estimations can be obtained. In addition, most of the
mixed effects formulations did not take the time-dependent error structure into
consideration.

Due to the mentioned-above difficulties, the stochastic process formulation
turned out to be an alternative approach to model the product’s degradation
path. Typical examples for this approach are Doksum and Hóyland (1992), Yu
and Tseng (2002), Tseng, Tang and Ku (2003), and Lawless and Crowder (2004).
Most literature in this area assume that the error term of degradation path follows
a Wiener process (which is a time-dependent version of the iid N(0, 1)) or a
Gamma process. However, motivated from the residual analysis of a real LED
data (see Section 6 and Figures 4-5 below), a stochastic diffusion process is more
appropriate to model the error term of degradation path. Hence, a stochastic
diffusion formulation is adopted in this paper.

Assuming the error term satisfies a stochastic differential equation, we show
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that the proposed degradation model turns out to be a Gauss-Markov process.
Then, the product’s lifetime distribution can be expressed in terms of a second-
kind Volterra intergral equation. Furthermore, if the proposed degradation model
satisfies a specific condition (which was motivated from LED data in Section 6),
then the product’s lifetime distribution reduces to be a function of truncated
inverse Gaussian (TIG) distribution. Hence, two approximate formulas for the
product’s mean-time-to-failure (MTTF) and median life (B50) can be easily de-
rived. Finally, we extend the proposed method to the case of ADT and a real
LED data is used to illustrate the proposed procedure. The result demonstrates
that the proposed method has a good performance in the LED lifetime prediction.

The rest of this paper is organized as follows. Section 2 uses a stochastic
diffusion model to formulate the product’s degradation path. Section 3 derives
the product’s lifetime distribution of the proposed procedure. Section 4 presents
the approximate formulas for the product’s MTTF and B50. Section 5 extends
the proposed procedure to an ADT with two accelerating variables. Section 6
uses the LED data to illustrate the proposed method. A performance comparison
between our proposed method and mixed effect model is also addressed. Finally,
Section 7 addresses some concluding remarks.

2. Problem Formulation

Let L(t) denote the degradation path of a specific quality characteristic of a
product at time t. Without loss of generality, we assume that L(t) is a decreasing
function of time t and ω denotes the critical level for this degradation path. Then
the product’s lifetime Z can be suitably defined as the first time when L(t) crosses
the critical level ω, that is,

Z = inf{t|L(t) ≤ ω}. (2.1)

Traditionally, we often use the following model to describe the degradation
path:

L(t) = M(t) + ε(t), (2.2)

where M(t) and ε(t) denote the mean degradation path and the error term at time
t, respectively. Since degradation is a continuous decay process, the independence
assumption among ε(t) appears to be questionable (Tseng et al., 2003). With
this in mind, the following stochastic differential equation is more appropriate to
describe ε(t) (Øksendal, 2003):

dε(t) = s(t)dB(t), (2.3)

where B(t) denotes a standardized Brownian motion. Note that if s(t) is a
constant, then (2.2) reduces to degradation path in Tseng and Peng (2004).



318 S-T Tseng and C.-Y Peng

The goal of a degradation analysis is to find the product’s lifetime distribution
of Z and assess it’s lifetime information such as MTTF and B50. Hence, some
related decision problems are summarized as follows:

(i) How to derive the probability density function of Z?

(ii) How to obtain the product’s MTTF and B50?

(iii) How to extend the proposed procedure to analyze an ADT data?

We will address these questions in the following sections.

3. The probability density function of Z

From (2.2)-(2.3), L(t) can be expressed as follows:

L(t) = M(t) +
∫ t

0
s(x)dB(x). (3.1)

Following from Hoel et al. (1972, pages 135-147), it is easily seen that {L(t)|t ≥ 0}
follows a Gaussian process with the following properties:

(i) E(L(t)) = M(t) and Var(L(t)) =
∫ t

0
s2(x)dx;

(ii) E(L′(t)) = M ′(t) and Var(L′(t)) = s2(t);

(iii) If t1 ≤ t2, then Cov(L(t1), L(t2)) =
∫ t1

0
s2(x)dx.

From the result of Mehr and McFadden (1965), we have the following result:

Proposition 1:

L(t) = M(t) + B

(∫ t

0
Υ(x)dM(x)

)
, (3.2)

where

Υ(t) =
Var(L′(t))
E(L′(t))

, for all t > 0. (3.3)

Now, set h1(t) =
∫ t
0 Υ(x)dM(x), h2(t) = 1, and S(t) = M(t) − ω. Then by

using Theorem 3.1 of Di Nardo, et al. (2001), the pdf of Z, fZ(t), satisfies the
following non-singular second-kind Volterra integral equation:

fZ(t) = −2Ψ(t|0, 0) + 2
∫ t

0
fZ(x)Ψ(t|M(x) − ω, x)dx, (3.4)
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where

Ψ(t|y, x) =

{
M ′(t)

2
−
(

M(t) − ω

2
− y

2

)
Υ(t)M ′(t)∫ t

x Υ(u)dM(u)

}
g(t|y, x)

and

g(t|y, x) =
1√

2π
∫ t
x Υ(u)dM(u)

exp

(
−(M(t) − ω − y)2

2
∫ t
x Υ(u)dM(u)

)
.

Once the pdf fZ(t) is obtained, then the product’s MTTF and B50 can be
solved numerically by MTTF =

∫∞
0 tfZ(t)dt and

∫ B50
0 fZ(t)dt = 0.5. However,

the above recursive formula for fZ(t) is complicated for practical applications.

4. Expressions for MTTF and B50 under constant Υ(t)

Hereafter, we restrict our attention to a special case of Υ(t) is a constant.
This assumption is motivated from a LED real example in Section 6. From (3.3),
note that Υ(t) is always a negative function of time t. We further assume that
Υ(t) is a constant (independent of t), that is,

Υ(t) = −σ2, (4.1)

where σ > 0. Under this assumption, the expression of fZ(t) can be further
simplified as follows:

fZ(t) =
−(1 − ω)M ′(t)

K
√

2πσ2(1 − M(t))3
exp

(
− (M(t) − ω)2

2σ2(1 − M(t))

)
, 0 < t < ∞ (4.2)

where K is a normalizing constant.
Let

Y = 1 − M(Z). (4.3)

Then Y follows a truncated inverse Gaussian (TIG) distribution. That is, the
pdf of Y can be expressed as (Chhikara and Folks, 1989):

gY (y) =
(1 − ω)

K
√

2πσ2y3
exp

(
−(y − (1 − ω))2

2σ2y

)
, 0 < y < 1.

Here we introduce the approximate formulas for the product’s MTTF (=E(Z))
and B50, respectively.
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4.1 Approximate formula for MTTF

From (4.3), we have Z = M−1(1 − Y ). Hence, by using δ-method, it is easy
to derive the following result.

MTTF ≈ M−1(1 − E(Y )) − Var(Y )
2

M ′′(M−1(1 − E(Y )))
(M ′(M−1(1 − E(Y ))))3

, (4.4)

where

E(Y ) = (1 − ω)
(

Φ(ω/σ) − G

Φ(ω/σ) + G

)
,

Var(Y ) = σ2(1 − ω)
(

Φ(ω/σ) − G

Φ(ω/σ) + G

)
+ (1 − ω)2

(
1 −

(
Φ(ω/σ) − G

Φ(ω/σ) + G

)2
)

−2σ(1 − ω)
(

φ(ω/σ)
Φ(ω/σ) + G

)
,

G = exp
(

2(1 − ω)
σ2

)
Φ
(

ω − 2
σ

)
,

and Φ and φ are the cdf and pdf of N(0, 1), respectively. Note that E(Y ) and
V ar(Y ) in (4.4) can be obtained directly by Patel (1965).

In practical applications, when σ2 → 0, it is easily seen from l’Hospital rule
that

G → 0,
Φ(ω/σ) − G

Φ(ω/σ) + G
→ 1,

and

φ(ω/σ)
Φ(ω/σ) + G

→ 0.

Hence, we obtain a simple expression for MTTF as follows:
Proposition 2:

MTTF ≈ M−1(ω) − σ2(1 − ω)
2

M ′′(M−1(ω))
(M ′(M−1(ω)))3

. (4.5)

4.2 Approximate formula for the median life

The product’s p-th percentile (ξp = F−1
Y (p)) is also an important reliability

measure of the product. Let

X ∼ IG(1 − ω, (1 − ω)2/σ2),
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then
FY (y) = FX(y)/K,

where

FX(y) = Φ
(

1 − ω

σ
√

y

(
y

1 − ω
− 1
))

+exp
(

2(1 − ω)
σ2

)
Φ
(
−1 − ω

σ
√

y

(
y

1 − ω
+ 1
))

.

Again, there is no closed form for ξp. From the approximate transformation in
Whitmore and Yalovsky (1978), we obtain

σ

2
√

1 − ω
+

√
1 − ω

σ
ln
(

Y

1 − ω

)
d−→ N(0, 1), if σ2 → 0.

Thus,

FX(y) ≈ Φ
[

σ

2
√

1 − ω
+

√
1 − ω

σ
ln
(

y

1 − ω

)]
.

From (4.3), we have the following result:

ξp ≈ M−1

[
1 − (1 − ω) exp

(
Φ−1(Kp)σ√

1 − ω
− σ2

2(1 − ω)

)]
.

Hence, as p = 0.5 and K ≈ 1, the median life (B50) can be reduced to
Proposition 3:

B50 ≈ M−1

[
1 − (1 − ω) exp

(
− σ2

2(1 − ω)

)]
. (4.6)

5. Applications to Accelerated Degradation Tests

For a highly reliable product with a slow degradation rate, we usually use
higher-level stress variables (such as temperature, voltage, electric current, etc.)
to accelerate the degradation path. Without loss of generality, we assume that
(A0, T0) denotes the normal use stress and {Ai}m

i=1 and {Tj}n
j=1 are the electric

current and temperature variables, where m and n denote the number of stress
levels for these two accelerating variables, respectively.
Let Lij(t) denote the degradation path under the combination of (Ai, Tj). Then
the degradation path in (2.2) can be modified as follows:

Lij(t) = Mij(t) + εij(t). (5.1)

Generally speaking, without specifying the functional form of Mij(t) and its
life-stress relation, it is impossible to extrapolate the lifetime information under
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a normal use condition. Now, motivated from Yu and Tseng (1998), we assume
that

Mij(t) = exp(−ηijt
δ), ∀t ≥ 0, (5.2)

where ηij follows a generalized Eyring law, that is,

ln ηij = γ0 + γ1 ln(Ai) +
γ2

273.15 + Tj
+

γ3 ln(Ai)
273.15 + Tj

. (5.3)

Note that the above formula has been widely used for describing the degradation
path of the light intensity of the LED lamp (Fukuda, 1991).

Let L00(t) denote the degradation path under (A0, T0). Then the product’s
lifetime, Z00, can be obtained directly from (2.1) by replacing L(t) with L00(t).
Let MTTF00 and B5000 denote the MTTF and the median life of Z00, respec-
tively. Then, as σ2 → 0, the product’s MTTF at the use condition can be
expressed as:

MTTF00 ≈
(− lnω

η00

)1/δ (
1 +

σ2(1 − ω)(1 − δ − δ ln ω)
2δ2ω2(ln ω)2

)
. (5.4)

Similarly, the median life can be expressed as:

B5000 ≈
(− ln(1 − (1 − ω) exp(−σ2/(2(1 − ω))))

η00

)1/δ

. (5.5)

Now, if the unknown parameters η00, δ and σ2 in (5.4) and (5.5) can be
estimated successfully, then the product’s predicted MTTF and estimated B50
can be easily obtained. In the following subsection, we will address this issue.

5.1 Estimations of unknown parameters

Extending the results of Sections 3 and 4 to the case of ADT, Lij(t) follows
a Gauss-Markov process, hence

Lij(t)
d∼ N

(
Mij(t), σ2(1 − Mij(t))

)
.

Let Lijk(tl) denote the degradation path of k-th unit under (Ai, Tj) at time tl.
Set ∆Lijk(tl) = Lijk(tl) − Lijk(tl−1) and ∆Mij(tl) = Mij(tl) − Mij(tl−1). For all
1 ≤ k ≤ nij, 1 ≤ l ≤ l∗, then

∆Lijk(tl)
ind.∼ N(∆Mij(tl),−σ2∆Mij(tl)).
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By using the independent increment property, the likelihood function can be
expressed as follows:

L(γ0, γ1, γ2, γ3, δ, σ) =
∏
(i,j)

nij∏
k=1

l∗∏
l=1

{
1

σ
√−∆Mij(tl)

φ

(
∆Lijk(tl) − ∆Mij(tl)

σ
√−∆Mij(tl)

)}
.

Hence, the MLE for all unknown parameters can be solved by maximizing the
above likelihood function.

6. Analysis of LED Degradation Data

LED products have become widely used in a variety of fields with applica-
tions ranging from consumer electronics to optical fiber transmission systems.
High reliability is especially required in optical fiber transmission. Hence, ob-
taining lifetime information (or distributions) for high-reliability components is
a challenge to the manufacturers. For such a highly reliable product, an ADT
is used to speed up its degradation. From engineering knowledge, electric cur-
rent and temperature are two suitable accelerating variables for LED products.
Three higher stress levels for electric current (say, A1 = 10 mA, A2 = 20
mA and A3 = 30 mA) and for temperature (say, T1 = 25◦C, T2 = 65◦C and
T3 = 105◦C) are carefully chosen. Due to the cost consideration, only six
combinations (cells) of these two accelerating variables, say {(Ai, Tj)}, (i, j) ∈
{(1, 1), (1, 2), (1, 3), (2, 1), (3, 1), (3, 3)}, are conducted and the test units for these
cells are (n11, n12, n13, n21, n31, n33)=(24, 25, 24, 25, 25, 22).

A key quality characteristic of LED lamp is its light intensity. LED light
intensity degrades over time. The measuring frequency of its light intensity is
168 hours (except for few cases) and the experiment was terminated at the time
of 9998 hours for each cell. Hence, 58 observations of light intensity of LED
products are recorded1. Figure 1 shows the plots of {Lijk(t)}nij

k=1, for all (i, j).
The goal of this ADT is to assess the lifetime distribution of LED lamp under
a normal use conditions, say A0 = 7.5 mA, and T0 = 20◦C. Note that the
degradation paths in the cell of (30 mA, 105◦C) were designed to estimate the
interaction effect between temperature and current.

1The readers who are interested in this data set may send email to the author via
sttseng@stat.nthu.edu.tw
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Figure 1: Accelerated degradation paths of LED data
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Figure 2: Sampled mean degradation paths of LED data

Figure 2 shows the plots of the sample mean degradation path, M̂ij(t), for all
six cells and Figure 3 plots log(− log M̂ij(t)) against log(t). Roughly speaking,
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Figure 3: Transformation of sampled mean degradation paths of LED data
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Figure 4: Residual plots of the LED degradation data

it shows a reasonable linear relationship between log(− log M̂ij(t)) and log(t),
except for the cell of (30 mA, 105◦C) has demonstrated a significantly over-stress
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pattern after 1620 hours. After confirming with the product engineers, the valid
data for this cell is only restricted up to 1620 hours. The R2 fitting for generalized
Eyring law (of the truncated data) is 0.918. Hence, (5.2) and (5.3) are appropriate
models for describing the mean degradation path and life-stress relationship of
LED data, respectively.

Figure 4 shows the plots of ε̂ijk(tl) and it has an outward-opening funnel
pattern. Figure 5 shows the plots of ∆ε̂ijk(tl)/∆tl, where ∆tl = tl − tl−1. Except
for few extreme cases, the means of all ∆ε̂ijk(t)/∆t are around 0 and their curve
patterns are damped oscillation and decay over time. Note that ∆ε̂(t)/∆t ≈
dε(t)/dt, for all t. Hence, (2.3) is an appropriate model for the error term of LED
degradation path.
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Figure 5: The derivative of the residual plots for the LED data

Now, let

Υ̂ij(t) =
ŝ2
ij(t)

m̂ij(t)
, ∀t > 0,

where

m̂ij(t) =
1

nij

nij∑
k=1

(
∆Lijk(t)

∆t

)
,

and

ŝ2
ij(t) =

1
nij − 1

nij∑
k=1

(
∆Lijk(t)

∆t
− m̂ij(t)

)2

.
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Then, by applying LOWESS (robust locally weighted regression and smoothing
scatter plots) procedure proposed by Cleveland (1979), we conduct a scatter plot
smoothing for Υ̂ij(t) and the results are shown in Figure 6. It demonstrates that
the assumption of (4.1) is reasonable for LED ADT data. Hence, we have

Lij(t) = exp(−ηijt
δ) + σB(1 − exp(−ηijt

δ)). (6.1)
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Figure 6: The plots of Υ̂ij(t) and its smoothing

Following from Section 5.1, the MLEs for unknown parameters can be solved
numerically as follows:

(γ̂0, γ̂1, γ̂2, γ̂3, δ̂, σ̂) = (−3.8735, 1.39,−1058.5766,−233.2695, 0.5219, 0.01286).

Now substitute the MLEs (γ̂0, γ̂1, γ̂2, γ̂3) into (5.3), we obtain the result that
η̂00 = 0.00186. Thus, under normal use stress (7.5 mA, 20◦C), the predicted
MTTF00 and B5000 are 84580.3 and 84452.0, respectively. A bootstrap sampling
technique is used to construct 95% confidence intervals for MTTF00 and B5000.
The results are [76254.8, 92905.7] and [75152.4, 93751.6], respectively.

6.1 Performance of the proposed procedure

In the LED data, for any cell of (Ai, Tj) with a larger ω, the sample MTTF
can be obtained directly via the sample mean of the first passage time of its
degradation path that hits ω. In the meantime, the predicted MTTF of the
cell of (Ai, Tj) can be obtained by replacing (ηij , δ, σ) in (5.4) by (η̂ij , δ̂, σ̂),
respectively. Hence, the performance of the proposed procedure can be observed
via its relative prediction error between the sample MTTF and its predicted
MTTF. Under 0.6 ≤ ω ≤ 0.8, Table 1 shows the predicted MTTF (we denote
our proposed procedure as TP method), the sample MTTF and their relative
prediction error for all six combinations of (Ai, Tj). For example, when ω = 0.7,
the sample MTTF for the cell of (20 mA, 25◦C) is 7121.5 hours and its predicted
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MTTF is 6392.18 hours. The relative prediction error is −10.24%. Except for
one extreme cases in (30 mA, 25◦C) with (ω = 0.8, 42.31%), and one case in
(30 mA, 105◦C) with (ω = 0.8, −27.04%), all the relative prediction errors are
significantly less than ±20%. It demonstrates that (5.4) provides a good lifetime
prediction for LED data.

Similarly, under 0.6 ≤ ω ≤ 0.8, Table 2 shows the predicted B50 (again,
we denote it as TP method), the sample B50 and their relative prediction error
for all six combinations of (Ai, Tj). Again, for 0.6 ≤ ω ≤ 0.8, we use (5.5) to
assess the product’s B50 of all six cells in the LED data. Roughly speaking, the
proposed procedure of (5.5) has a good performance in its B50 prediction except
for the cells with an extreme high electric current (say 30 mA).

6.2 Comparison with mixed effect model

As we mentioned earlier that the mixed effects (ME) model is a well-known
approach for the degradation data. Hence, we would like to compare the predicted
performance between our proposed method and ME model (such as Meeker et al.,
1998). Note that ME model has taken the unit-to-unit variation of test units into
consideration. Hence, the ME model for the LED data is completely the same as
(5.1-5.3), except for considering that (γ0, γ1, γ2, γ3) follows a multivariate normal
distribution with N4(γ∗,Σ∗) and εijk(t) follows an iid N(0, σ2

ε ). From Figure
3, we can reasonably assume that δ is a fixed, unknown parameter. Now, set
aT = (1 lnAi

1
273.15+Tj

lnAi
273.15+Tj

). Then ln ηij follows a normal distribution with
N(aT γ∗,aT Σ∗a). The cdf of lifetime distribution with the mixed effects model
can be derived as follows:

FME(t) = 1 − Φ
(

ln(− ln ω) − δ ln t − aTγ∗
√

aT Σ∗a

)
.

Hence, we have

MTTFME =
∫ ∞

0
(1 − FME(t))dt,

and

B50ME =
(− ln ω

η

)1/δ

.

Now, return to the LED data again, the MLEs of all unknown parameters in the
mixed effects model are
δ̂ = 0.5231, σ̂ε = 0.0310, γ̂∗ = (−3.8782, 1.3864,−1059.8324,−233.4621)T and

Σ̂∗ =




0.0030 0.0010 0.6639 0.0881
0.0010 0.0004 0.2257 0.0309
0.6639 0.2257 148.3043 19.5429
0.0881 0.0309 19.5429 2.6643


 .
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Similar to Section 6.1, the performance of the mixed effects model can be
addressed via its relative prediction errors between the sample MTTF and its
predicted MTTF. Under 0.6 ≤ ω ≤ 0.8, Table 1 also shows the predicted MTTF
and their relative prediction errors of the ME method for all six combinations of
(Ai, Tj). For example, under ω = 0.7, and (10 mA, 65◦C), the relative predic-
tion errors for our method and ME method are −6.15% and 5.78%, respectively.
However, under ω = 0.7, and (30 mA, 25◦C), the relative prediction errors for
our method and ME method are 9.17% and 22.43%, respectively. It did not
demonstrate that which one has overall better prediction. However, for each
cell of (Ai, Tj), it demonstrates a trend that prediction errors of our method
are smaller than that of ME method as ω decreases. Hence, it implies that our
method may have smaller prediction error when ω is near to 0.50. Similarly,
under 0.6 ≤ ω ≤ 0.8, Table 2 also shows the predicted B50 and their relative pre-
diction errors of ME method for all six combinations of (Ai, Tj). It demonstrates
that our method of (5.5) has a significantly better performance than that of ME
model except for two cases: (ω = 0.7) with (10 mA, 65◦C) and (ω = 0.8) with
(10 mA, 105◦C). In addition, it also demonstrates a trend that our method has
a smaller prediction error as ω decreases.

7. Conclusion

In this paper, we introduced a stochastic diffusion process to model the prod-
uct’s degradation path and two approximate formulas for assessing the product’s
MTTF and B50 are also derived under a reasonable assumption on its degra-
dation model. Finally, a LED data is used to illustrate the proposed procedure
and prediction performance between our procedure with the ME model is also ad-
dressed. From Section 6.2, except for few cases, it demonstrates that our proposed
procedure has better prediction performance (in its MTTF and B50 prediction)
than the ME model. In addition, our approach provides the reliability analysts
with the explicit expressions for the product’s MTTF and B50, which can not be
obtained by using the conventional mixed effects formulation.
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