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Abstract: It is shown that the most popular posterior distribution for the
mean of the normal distribution is obtained by deriving the distribution of
the ratio X/Y when X and Y are normal and Student’s t random vari-
ables distributed independently of each other. Tabulations of the associated
percentage points are given along with a computer program for generating
them.
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1. Introduction

The normal distribution is the most popular distribution in statistics. Suppose
x is an observation from a normal distribution with mean µ and precision λ
(precision = 1/standard deviation). In a Bayesian context, one would usually
have some prior knowledge about λ. For the past 40 to 50 years, the Student’s
t distribution has been the most popular prior distribution because elicitation
of prior information in various physical, engineering, and financial phenomena is
closely associated with that distribution (see Kotz and Nadarajah (2004)). So, if
we assume that

p(µ, λ) = p(µ)p(λ)

∝
(

1 +
λ2

ν

)−(1+ν)/2

(with the diffuse prior for µ) then the posterior will be

p (µ, λ | x) ∝ λ exp
{
−1

2
λ2(x − µ)2

}(
1 +

λ2

ν

)−(1+ν)/2

.

Thus, the marginal posterior of µ will be

p (µ | x) ∝
∫ ∞

0
λ exp

{
−1

2
λ2(x − µ)2

}(
1 +

λ2

ν

)−(1+ν)/2

dλ. (1.1)



442 Saralees Nadarajah and Arjun K. Gupta

The density in (1.1) is the same as that of the ratio X/Y when X and Y are
normal and Student’s t random variables distributed independently of each other.
Hence, calculating the marginal posterior of µ amounts to deriving the exact
distribution of X/Y .

The distribution of X/Y has been studied by several authors especially when
X and Y are independent random variables and come from the same family.
For instance, see Marsaglia (1965) and Korhonen and Narula (1989) for normal
family, Press (1969) for Student’s t family, Basu and Lochner (1971) for Weibull
family, Shcolnick (1985) for stable family, Hawkins and Han (1986) for non-central
chi-squared family, Provost (1989) for gamma family, and Pham-Gia (2000) for
beta family.

However, there is relatively little work of the above kind when X and Y belong
to different families. In this note, we derive the marginal posterior distribution
given by (1.1), which amounts to deriving the distribution of | X/Y | when X
and Y are independent random variables with the pdfs

fX(x) =
1√
2πσ

exp
{
− x2

2σ2

}
(1.2)

and

fY (y) =
1√

νB (ν/2, 1/2)

(
1 +

y2

ν

)−(1+ν)/2

, (1.3)

respectively, for −∞ < x < ∞, −∞ < y < ∞, σ > 0 and ν > 0. We give explicit
expressions for the pdf and the cdf of | X/Y | (see Section 2). Tabulations of
the percentage points associated with | X/Y | are also provided (see Section 3)
along with a computer program for generating them (see Appendix). The calcu-
lations of this note involve several special functions, including the complementary
incomplete gamma function defined by

Γ(a, x) =
∫ ∞

x
ta−1 exp (−t) dt,

the Kummer function defined by

K(a, b;x) =
1

Γ(a)

∫ ∞

0
exp (−xt) ta−1(1 + t)b−a−1dt

and the hypergeometric function defined by

2F2 (a, b; c, d;x) =
∞∑

k=0

(a)k (b)k
(c)k (d)k

xk

k!
,
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where (e)k = e(e+1) · · · (e+k−1) denotes the ascending factorial. We also need
the following important lemmas.
Lemma 1: (Equation (2.3.6.9), Prudnikov et al., 1986, volume 1) For z > 0 and
p > 0, ∫ ∞

0

xα−1 exp(−px)
(x + z)ρ

dx = Γ(α)zα−ρK (α,α + 1 − ρ; pz) .

Lemma 2: (Equation (2.8.3.5), Prudnikov et al., 1986, volume 2) For z > 0,
α > 0 and c > 0,∫ ∞

0

xα−1(
x2 + z2

)ρ Φ
(
−
√

2cx
)

dx

=
zα−2ρ

4
B
(α

2
, ρ − α

2

)
− cz1+α−2ρ

2
√

π
B

(
α + 1

2
, ρ − α + 1

2

)

× 2F2

(
α + 1

2
,
1
2
;
3
2
,
α + 3

2
− ρ; c2z2

)

− c2ρ−α

2
√

π(2ρ − α)
Γ
(

α + 1
2

− ρ

)

× 2F2

(
ρ, ρ − α

2
; 1 + ρ − α

2
,
1 − α

2
+ ρ; c2z2

)
,

where Φ(·) denotes the cumulative distribution function of the standard normal
distribution.

Further properties of the above special functions can be found in Prudnikov
et al. (1986) and Gradshteyn and Ryzhik (2000).

2. Exact Distribution of the Ratio

Theorems 1 and 2 derive explicit expressions for the pdf and the cdf of |
X/Y | in terms of the Kummer, complementary gamma and the hypergeometric
functions.
Theorem 1: Suppose X and Y are distributed according to (1.2) and (1.3),
respectively. Then, the pdf of Z =| X/Y | can be expressed as

fZ(z) =

√
2ν√

πσB (ν/2, 1/2)
K
(

1,
3 − ν

2
, 1;

z2ν

2σ2

)
, (2.1)

for z > 0.

Proof: The general formula for the pdf of | X/Y | is

fZ(z) =
∫ ∞

−∞
| y | {fX (| y | z) + fX (− | y | z)} fY (y)dy.
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Since the given forms for fX(·) and fY (·) are both symmetric around zero, the
above can be expressed as

fZ(z) = 4
∫ ∞

0
yfX (yz) fY (y)dy

=
4√

2πνσB (ν/2, 1/2)

∫ ∞

0
y exp

(
−y2z2

2σ2

)(
1 +

y2

ν

)−(1+ν)/2

dy

=

√
2νν/2

√
πσB (ν/2, 1/2)

∫ ∞

0
exp

(
−z2w

2σ2

)
(w + ν)−(1+ν)/2 dw, (2.2)

where the last step follows by substituting w = y2. The result of the theorem
follows by applying Lemma 1 to calculate the integral in (2.2). �

Theorem 2: Suppose X and Y are distributed according to (1.2) and (1.3),
respectively. Then, the cdf of Z =| X/Y | can be expressed as

FZ(z) =
4z

√
ν√

2πσ(ν − 1)B (ν/2, 1/2)
2F2

(
1,

1
2
;
3
2
,
3 − ν

2
;
νz2

2σ2

)

−(−1)3ν/2Γ ((1 − ν)/2)√
πB (ν/2, 1/2)

{
Γ
(ν

2

)
− Γ

(
ν

2
,−νz2

2σ2

)}
(2.3)

for z > 0.

Proof: The general formula for the cdf of | X/Y | is

FZ(z) =
∫ ∞

−∞
{FX (| y | z) − FX (− | y | z)} fY (y)dy. (2.4)

Considering

FX(x) = Φ
(x

σ

)
,

(2.4) can be expressed as

FZ(z) = 1 − 2√
νB (ν/2, 1/2)

∫ ∞

−∞
Φ
(
−z | y |

σ

)(
1 +

y2

ν

)−(1+ν)/2

dy

= 1 − 4νν/2

B (ν/2, 1/2)

∫ ∞

0
Φ
(
−zy

σ

) (
y2 + ν

)−(1+ν)/2
dy, (2.5)

where Φ(·) denotes the cumulative distribution function of the standard normal
distribution. By direct application of Lemma 2, the integral in (2.5) can be
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calculated as ∫ ∞

0
Φ
(zy

σ

) (
y2 + ν

)−(1+ν)/2
dy

=
B (1/2, ν/2)

4νν/2
− ν(1−ν)/2z

(ν − 1)σ
√

2π
2F2

(
1,

1
2
;
3
2
,
3 − ν

2
;
νz2

2σ2

)

−zνΓ ((1 − ν)/2)

2
√

πν
(√

2σ
)ν 2F2

(
1 + ν

2
,
ν

2
; 1 +

ν

2
,
1 + ν

2
;
νz2

2σ2

)
. (2.6)

The last term in (2.6) can be simplified by using the property that

2F2

(
1 + ν

2
,
ν

2
; 1 +

ν

2
,
1 + ν

2
;x
)

=
ν

2
(−x)−ν/2

{
Γ
(ν

2

)
− Γ

(ν

2
,−x

)}
.(2.7)

The result of the theorem follows by combining (2.5)–(2.7). �
Using special properties of the hypergeometric function, one can derive sim-

pler forms for the distribution of | X/Y | when ν takes integer values. This is
illustrated in the corollary below.
Corollary 1: If ν = 2, 4, 6, 8, 10 then (2.3) reduces to

FZ(z) = exp(u)
{

2Φ
(√

2u
)
− 1
}

+ 1 − exp(u),

FZ(z) =
(
1/
√

π
) [−√

u +
√

π exp(u)
{

2Φ
(√

2u
)
− 1
}

√
πu exp(u)

{
2Φ
(√

2u
)
− 1
}
−√

π +
√

π exp(u) −√
πu exp(u)

]
,

FZ(z) = 1/
(
4
√

π
) [− 5

√
u + 2u3/2 − 4

√
πu exp(u)

{
2Φ
(√

2u
)
− 1
}

+4
√

π exp(u)
{

2Φ
(√

2u
)
− 1
}

+ 2
√

πu2 exp(u)
{

2Φ
(√

2u
)
− 1
}

+4
√

π + 4
√

πu exp(u) − 4
√

π exp(u) − 2
√

πu2 exp(u)
]
,

FZ(z) = 1/
(
24
√

π
) [

14u3/2 − 33
√

u − 4u5/2 − 24
√

πu exp(u)
{

2Φ
(√

2u
)
− 1
}

+12
√

πu2 exp(u)
{

2Φ
(√

2u
)
− 1
}

+ 24
√

π exp(u)
{

2Φ
(√

2u
)
− 1
}

4
√

πu3 exp(u)
{

2Φ
(√

2u
)
− 1
}
− 24

√
π − 24

√
πu exp(u)

12
√

πu2 exp(u) + 24
√

π exp(u) − 4
√

πu3 exp(u)
]
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and

FZ(z) = 1/
(
192

√
π
) [

118u3/2 − 36u5/2 − 279
√

u + 8u7/2

+96
√

πu2 exp(u)
{

2Φ
(√

2u
)
− 1
}
− 192

√
πu exp(u)

{
2Φ
(√

2u
)
− 1
}

32
√

πu3 exp(u)
{

2Φ
(√

2u
)
− 1
}

+ 192
√

π exp(u)
{

2Φ
(√

2u
)
− 1
}

8
√

πu4 exp(u)
{

2Φ
(√

2u
)
− 1
}

+ 192
√

π − 96
√

πu2 exp(u)

192
√

πu exp(u) + 32
√

πu3 exp(u) − 192
√

π exp(u) − 8
√

πu4 exp(u)
]
,

respectively, where u = z2/(2σ2ν) and Φ(·) denotes the cumulative distribution
function of the standard normal distribution.
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Figure 1: Plots of the pdf (2.1) for ν = 1, 2, 3, 10 and σ = 1
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Table 1: Percentage points of Z =| X/Y |.

ν p = 0.01 p = 0.05 p = 0.1 p = 0.9 p = 0.95 p = 0.99
1 0.00285 0.01973 0.04805 4.95306 10.09401 50.78179
2 0.00894 0.04613 0.09629 5.55459 11.23967 56.41010
3 0.01137 0.05731 0.11686 5.79018 11.69280 58.64533
4 0.01254 0.06297 0.12751 5.91491 11.93352 59.83438
5 0.01321 0.06628 0.13389 5.99189 12.08233 60.56984
6 0.01365 0.06844 0.13811 6.04406 12.18327 61.06894
7 0.01395 0.06996 0.14109 6.08172 12.25617 61.42955
8 0.01418 0.07109 0.14331 6.11017 12.31128 61.70216
9 0.01436 0.07196 0.14503 6.13242 12.35439 61.91543
10 0.01450 0.07266 0.14640 6.15029 12.38903 62.08681
11 0.01461 0.07322 0.14751 6.16496 12.41747 62.22752
12 0.01470 0.07369 0.14844 6.17721 12.44123 62.34511
13 0.01478 0.07408 0.14922 6.18760 12.46138 62.44483
14 0.01485 0.07442 0.14988 6.19651 12.47869 62.53048
15 0.01491 0.07471 0.15046 6.20426 12.49371 62.60483
16 0.01496 0.07496 0.15096 6.21104 12.50687 62.66997
17 0.01500 0.07519 0.15140 6.21703 12.51850 62.72752
18 0.01504 0.07539 0.15180 6.22236 12.52885 62.77874
19 0.01508 0.07556 0.15215 6.22714 12.53812 62.82460
20 0.01511 0.07572 0.15246 6.23144 12.54646 62.86591

Figure 1 illustrates possible shapes of (2.1) for a range of values of ν. Note
that the shapes are unimodal and that the value of ν largely dictates the behavior
of the pdf near z = 0.

3. Percentiles

In this section, we provide tabulations of percentage points zp associated with
the cdf (2.3). These values are obtained numerically by solving the equation

4zp

√
ν√

2πσ(ν − 1)B (ν/2, 1/2)
2F2

(
1,

1
2
;
3
2
,
3 − ν

2
;
νz2

p

2σ2

)

−(−1)3ν/2Γ ((1 − ν)/2)√
πB (ν/2, 1/2)

{
Γ
(ν

2

)
− Γ

(
ν

2
,−νz2

p

2σ2

)}
= p.

Evidently, this involves computation of the hypergeometric and the incomplete
gamma functions and routines for this are widely available. We used the functions
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hypergeom ([·, ·], [·, ·], ·) and GAMMA (·, ·) in the algebraic manipulation package,
MAPLE. Table 1 below provides the numerical values of zp for ν = 1, 2, . . . , 100
and p = 0.01, 0.05, 0.1, 0.9, 0.95, 0.99. It is assumed, without loss of generality,
that σ = 1. A longer version of the table can be found in the electronic version
of this paper.

It is expected that this table will be of use to many just like the tables for
the normal and t distributions are. Similar tabulations could be easily derived
for other values of ν and p by using the hypergeom ([·, ·], [·, ·], ·) and GAMMA
(·, ·) functions in MAPLE. A sample program is shown in the Appendix below.
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Appendix

The following program in MAPLE can be used to generate tables similar to
that presented in Section 3.

f1:=(4*sqrt(u)/((nu-1)*sqrt(Pi)*Beta(nu/2,1/2))):
f1:=f1*hypergeom([1,1/2],[3/2,(3-nu)/2],u):
f2:=(2*(-u)**(nu/2)*GAMMA((1-nu)/2))/(nu*sqrt(Pi)*Beta(nu/2,1/2)):
f2:=f2*hypergeom([(1+nu)/2,nu/2],[1+nu/2,(1+nu)/2],u):
ff:=f1-f2:
p1:=fsolve(ff=0.01,u=0..10000):
p2:=fsolve(ff=0.05,u=0..10000):
p3:=fsolve(ff=0.1,u=0..10000):
p4:=fsolve(ff=0.90,u=0..10000):
p5:=fsolve(ff=0.95,u=0..10000):
p6:=fsolve(ff=0.99,u=0..10000):
print(nu,p1,p2,p3,p4,p5,p6);
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