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Abstract: Relative entropy identities yield basic decompositions of cat-
egorical data log-likelihoods. These naturally lead to the development of
information models in contrast to the hierarchical log-linear models. A
recent study by the authors clarified the principal difference in the data
likelihood analysis between the two model types. The proposed scheme of
log-likelihood decomposition introduces a prototype of linear information
models, with which a basic scheme of model selection can be formulated
accordingly. Empirical studies with high-way contingency tables are exem-
plified to illustrate the natural selections of information models in contrast
to hierarchical log-linear models.

Key words: Contingency tables, log-linear models, information models,
model selection, mutual information.

1. Introduction

Analysis of contingency tables with multi-way classifications has been a fun-
damental area of research in the history of statistics. From testing hypothesis of
independence in a 2 × 2 table (Pearson, 1904; Yule, 1911; Fisher, 1934; Yates,
1934) to testing interaction across a strata of 2× 2 tables (Bartlett, 1935), many
discussions had emerged in the literature to build up the foundation of statisti-
cal inference of categorical data analysis. In this vital field of applied statistics,
three closely related topics have gradually developed and are still theoretically
incomplete even after half a century of investigation.

The first and primary topic is born out of the initial hypothesis testing for
independence in a 2×2 table. From 1960’s utill the 1980’s, Fisher’s exact test re-
peatedly received criticism for being conservative due to discrete nature (Berkson,
1978; Yates, 1984). Although the arguments in favor of the unconditional tests
essentially focused on using the unconditional exact tests in the recent decades,
the reasons for preferred p values and sensitivity of the unconditional tests have
not been assured in theory. In this respect, a recent approach via information
theory proved that the power analysis of unconditional tests is not suitable for
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testing independence, but simply for equal and unequal binomial rates. Conse-
quently, the long term ambiguous criticism of the exact test was finally proved to
be logically vacuous (Cheng et al., 2005). In retrospect, it is seen that noncentral
hypergeometric distributions cannot determine power evaluations at arbitrary
alternative 2 × 2 tables (Fisher, 1962).

Extending to several 2×2 tables, Bartlett (1935) addressed the topic of testing
interaction and derived an estimate of the common odds ratio. Norton (1945),
Simpson (1951) and Roy and Kastenbaum (1956) discussed interpretations of in-
teractions and showed that Bartlett’s test is a conditional maximum likelihood
estimation (MLE) given the table margins. For the same data, the celebrated
CMH test for association (Cochran, 1954; Mantel and Haenszel, 1959) has been
applied extensively in the fields of biology, education, engineering, medicine, soci-
ology and psychology. However, it was implicit that an inferential flaw lies in the
estimating-equation design of the CMH score test (Woolf, 1955; Goodman, 1969;
Mellenberg, 1982). In addition, the probability at alternate interactions given
the observed data, that is, the power analysis at alternatives to the null, has only
recently been discussed in the literature. A remedy to such statistical inference
was recently provided by an analysis of invariant information identities (Cheng,
et al., 2007). The solution, as an extension of the power analysis for a single 2×2
table, will also be useful for testing hypothesis with high-way contingency tables,
which is the topic of this study to be discussed below.

Analysis of variance (ANOVA, Fisher, 1925) inspired discussions of parti-
tioning chi-squares within the contingency tables (Mood, 1950; Lancaster, 1951;
Snedecor, 1958; Claringbold, 1961). It inspired in turn the development of log-
linear models (Kullback, 1959; Darroch, 1962; Lewis, 1962; Birch, 1964; and
Goodman, 1964). Hierarchical log-linear models were thereby formulated to
analyze general aspects of contingency tables (cf. Goodman, 1970; Bishop et
al., 1975), and since then, have been widely used in the literature (Hagenaars,
1993;, Christensen, 1997; Agresti, 2002). A drawback of inference with the the
test statistics by Lancaster, Kullback and Claringbold was remarked by Plackett
(1962).

It was recently found that a flaw of inference exists with a likelihood ratio test
for association (Roy and Kastenbaum, 1956) and another for testing interaction
(Darroch, 1962) and again, the data likelihood identities provide appropriate
explanations (Cheng, et al., 2006). These data information identities also indicate
that analysis of variance may not be designed and used to measure deviations
from uniform association, or varied interactions between the categorical variables,
which are simply defined by likelihood factorizations. A prototype of the linear
information models will be formulated below and compared to the hierarchical
log-linear model.
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The basic log-linear models in three variables will be reviewed in Section 2,
where the notations and parameters defined by ANOVA decompositions may re-
quire careful interpretations. Next, information identities of three-way tables are
fully discussed to characterize the corresponding information models, which may
differ from the log-linear models only in some representations. In Section 3, the
prototypes of information models with four-way and high-way tables begin to in-
dicate the essential difference from that of the log-linear models, in particular, an
elementary scheme of model selection can be formulated with easily justified tests
of significance. Section 4 will provide empirical study of four- and five-way tables,
which have been analyzed with log-linear models in the literature. Comparisons
between the log-linear models and the proposed information models will be dis-
cussed, and obvious advantages over the log-linear modeling are easily shown
through the information models selection. In conclusion, remarks on criteria of
information models selection are noted for further useful research.

2. Elementary Log-likelihood Equations

The representations of data log-likelihood can be formulated in various ways,
depending on the methods of likelihood decomposition. There are numerous ways
of decomposing the data likelihood with high-way tables. It is elementary and
instructive to discuss the case of three-way tables, which allow only a few different
expressions of log-likelihood equations. The three-way log-linear models is first
reviewed.

2.1 Basic log-linear models

Suppose that individuals of a sample are classified according to three cate-
gorical variables {X}, {Y }, {Z} with classified levels: i = 1, ..., I, j = 1, ..., J,
k = 1, ...,K, respectively. Denote the joint probability density by

fijk(= f(i, j, k)) = P (X = i, Y = j, Z = k), (2.1)

where
∑

ijk fijk = 1. The full (saturated) log-linear model (Goodman, 1970;
Bishop, et al., 1975) is defined as

log fijk = λ + λX
i + λY

j + λZ
k + λXY

ij + λY Z
jk + λXZ

ik + λXY Z
ijk . (2.2)

The full model can be reduced to be a submodel of no three-way interaction,
or zero conditional association, which is denoted by (XY, Y Z,XZ). The model
permits all three pairs to be conditionally dependent, that is, no pair is condi-
tionally independent (Agresti, 2002); and, the corresponding log-linear model is
formulated as
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log fijk = λ + λX
i + λY

j + λZ
k + λXY

ij + λY Z
jk + λXZ

ik . (2.3)

In case, exactly one pair of factors is conditionally independent given the third
factor, say, {X,Z} given Y , then the model is expressed as

log fijk = λ + λX
i + λY

j + λZ
k + λXY

ij + λY Z
jk . (2.4)

With two pairs of conditionally independent factors, model (2.4) reduces to in-
dependence between {X,Y } and Z, denoted (XY,Z), and written as

log fijk = λ + λX
i + λY

j + λZ
k + λXY

ij . (2.5)

The final reduction to three pairs of conditional independence is denoted by
(X,Y,Z), and expressed as

log fijk = λ + λX
i + λY

j + λZ
k . (2.6)

Indeed, equation (2.6) defines the mutual independence between the three factors,
that is, zero mutual information (Cheng et al., 2006).

Equation (2.3) obtains from (2.2) by checking the magnitude of the three-way
interaction using the iterated proportional fitting (Deming and Stephens, 1940).
Equation (2.4) is however not derived from (2.3), but directly computed from
(2.2) by deleting the conditional association between {X,Z} given Y , which is the
sum of the unique three-way interaction and the conditional uniform association
between {X,Z} given Y . This will be further explained using equation (2.12)
below. The parameters in the log-linear models, besides the normalizing constant
λ, are scaled log-likelihood ratios, or the logarithmic odds ratios. It is obvious
that the one-way and two-way parameters in each of the models (2.4) to (2.6)
are statistically independent using disjoint data information. Such a desirable
property is lost between the two-way and three-way terms in the models (2.2)
and (2.3), which indicates an intrinsic difference in the interpretation of these
log-linear models.

2.2 Basic information models

It may be useful to take a different look at the formulation of hierarchical log-
linear models, in order to understand the intrinsic difference between dependent
and independent likelihood decompositions. Basic identities of data likelihood
are examined, and a prototype of linear information models in three variables
will be considered. Define the marginal probabilities as

fi = fi·· =
J∑

j=1

K∑
k=1

fijk, fij· =
K∑

k=1

fijk; (2.1)
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and analogously, fj, fk; f·jk, fi·k. Also, let nijk denote the number of individuals
classified to the cell {X = i, Y = j, Z = k}, and similar notations n = n···, ni =
ni··, and nij·, denote the total cell frequency and marginal totals, respectively.
Some convenient terminology will be borrowed from our previous study (Cheng,
et al., 2006, Section 2). The entropy identity in three variables is expressed as

H(X) + H(Y ) + H(Z) = H(X,Y,Z) + I(X;Y ;Z) , (2.8)

where the marginal entropy, joint entropy, and the mutual information are defined
respectively to be

H(X) = −
∑

i

fi log fi , H(Y ) = −
∑

j

gj log gj ,

H(Z) = −
∑

k

hk log hk , H(X,Y ) = −
∑
i,j

fij· log fij· ,

H(X,Y,Z) = −
∑
i,j,k

fijk log fijk

I(X;Y ;Z) =
∑
i,j,k

fijk log
(

fijk

figjhk

)
= D(f(x, y, z)||f(x)g(y)h(z)). (2.9)

The last entry of (2.9), the mutual information, is the Kullback-Leibler diver-
gence between the joint density and the product marginal density of (X,Y,Z).
The sample analogs of the entries in (2.9), the sample entropy and the sample
mutual information, are defined in terms of the observed cell frequencies, which
are the natural maximum likelihood estimates under the general model of multi-
nomial distribution. For example, the sample analog of the mutual information
I(X;Y ;Z) yields the likelihood ratio test statistic

∑
i,j,k

nijk log
(

nijkn
2

ninjnk

)
, (2.10)

such that twice of (2.10) is asymptotically chi-squared distributed with d.f. IJK−
(I+J +K)+2 under the null hypothesis of mutual independence. It is easily seen
that data log-likelihood admits three equivalent information identities, which are
the three possible saturated information models for a three-way table,

I(X;Y ;Z) = I(X;Y ) + I(Y ;Z) + I(X;Z|Y ) (2.11)
= I(X;Y ) + I(X;Z) + I(Y ;Z|X)
= I(X;Z) + I(Y ;Z) + I(X;Y |Z).
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Being saturated models, the equations of (2.11) are different expressions of the
log-linear full model (2.2). All three equations are reduced to model (2.3), if the
common interaction term Int(X;Y ;Z) in the equations, say,

I(X;Z|Y ) = Int(X;Y ;Z) + I(X;Z||Y ), (2.12)

is removed (equal to zero). The remaining terms are not the same, for example,
I(X;Z||Y ) characterizes the uniform association between X and Z, within the
levels of Y. The unique three-way interaction, Int(X;Y ;Z) of (2.12), characterizes
exactly the three-way term λXY Z

ijk of (2.2), and the latter expression is unique up
to the normalizing constant λ.

The special case of 2 × 2 × K table, the simplest three-way table, has been
a much disucussed topic in the literature. It was recently proposed that the two
summands of (2.12) form a natural two-step likelihood ratio (LR) test, where
the first step LR statistic, Int(X;Y ;Z), tests for no interaction between X and
Z, across K strata of Y ; and the second, I(X;Z||Y ), tests for no association
between X and Z, within strata of Y (Cheng et al., 2007). Logically, the second
step is in use only when the first step is insignificant. The two-step LR test for
no association across strata Y is shown to be asymptotically unbiased and more
powerful than the one-step omnibus LR test, the conditional mutual information
(CMI) I(X;Z|Y ) of (2.12), or Pearson’s chi-square test. Likewise, the two-step
LR test improves over the combination of the score tests, the Breslow-Day test
(1980) and the CMH test (1954, 1959).

If the omnibus CMI I(X;Z|Y ) is insignificantly small, then the conditional
odds ratios between X and Z, across the levels of Y , are close to 1, and the first
equation of (2.11) may be reduced to the sum I(X;Y ) + I(Y ;Z) which is model
(2.4). Otherewise, this CMI is significantly large, in which the two indepen-
dent summands, Int(X;Y ;Z) and I(X;Z||Y ), can be individually significantly
large or small, with four possible combined cases. In this case, if the test for
no interaction, Int(X;Y ;Z) = 0, is rejected, it is logically consistent with the
significant omnibus test; and, there is no need to perform the second step test;
and clearly, it is insufficient to use only the second-step test for testing no as-
sociation between X and Z, across Y . If the interaction is insignificantly small,
then the second-step test statistic I(X;Z||Y ), also called the generalized CMH
test (Agresti, 2002, p.325), is usually expected to be significantly large, that is
also consistent with the significant omnibus test. Here, with a rare chance it may
happen that both Int(X;Y ;Z) and I(X;Z||Y ) are insignificantly small, whereas
the omnibus CMI is marginally significant; and, it is theoretically rare that the
two-step test is not sufficiently sensitive. It is understood that such significant or
insignificant tests are defined with a common fixed level of significance for each
approximating chi-square distribution; and, it follows from (2.12) that four com-
binations of significance and insignificance patterns between the three LR tests
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are meaningful in practice. These information with varied statistical inference
are not directly revealed between models (2.2) to (2.4) as mentioned above. The
key point of fact, that equations (2.11) disallow the inclusion of all three two-way
terms, is not clarified in the discussion of hierarchical log-linear models.

It is perceivable that extensions of identity (2.11) to high-way contingency
tables will enhance interpretations of high-way effects and manifest further dif-
ferences from the conventional log-linear models. The goal of this study is to
make a natural and systematic extension of equation (2.11) to high-way contin-
gency tables, which are coined information models. The difference between the
proposed information models and the log-linear models will be illustrated using
four-way and five-way data tables that have been analyzed in the literature. Sub-
sequently, a prototype of the linear information model, defined by simple criteria
of model selection, will be introduced to offer advantage of statistical inference
over the conventional log-linear model.

3. Information Structures of High-Way Tables

The natural extensions of equation (2.11) consist of two major formulae for
each saturated model of a K-way contingency table. The primary formula is that
the log-likelihood decomposition is the sum of K main effects, (K − 1) two-way
(MI) effects, (K − 2) three-way (CMI) effects, ..., two (K − 1)-way CMI, and one
K-way CMI. The secondary formula is that each t-way CMI (t ≤ K) is a mutual
information between a pair of variables, conditioned upon other t−2 variables. A
t-way CMI is always a sum of the t-way interaction and the uniform association
between the pair of variables, conditioned on the remaining t − 2 variables. It
is plain that both formulae of data log-likelihood decompositions are built upon
the notion of mutual information, not in terms of ANOVA as defined with the
log-linear models.

3.1 A four-way information structure

It is observed from equation (2.11) that a common variable appears in each
term of the decomposed three-way mutual informtion, and it is used as the con-
ditioning variable (termed CV). This is not necessarily required of a four-way or
a high-way table, however, the use of such a CV is always applicable and partic-
ularly useful. When any variable is of primary interest, like the response variable
in a linear regression model, it is used as a CV for finding its relations to the
remaining variables. In case of four variables, the analog of (2.8) is the entropy
identity

H(W ) + H(X) + H(Y ) + H(Z) = H(W,X, Y,Z) + I(W ;X;Y ;Z). (3.1)
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And, an analog of (2.11) among many equivalent identities may be expressed as

I(W ;X;Y ;Z) = I(W ;X;Y ) + I((W,X, Y );Z)
= I(W ;X;Y ) + I((X,Y );Z) + I(W ;Z|X,Y )
= I(W ;Y ) + I(X;Y ) + I(W ;X|Y ) + I(Y ;Z)

+ I(X;Z|Y ) + I(W ;Z|X,Y ). (3.2)

The last equation of (3.2) follows by using (2.11) with the variable Y as the CV.
If there is no special CV of interest, then either a different identity of (2.11)
may be used to express I(W ;X;Y ), or another identity such as I((X,Y );Z) =
I(X;Z) + I(Y ;Z|X) can be used, in the second equation of (3.2). For example,
the last statement simply leads to different non-CV saturated models such as

I(W ;X;Y ;Z) = I(W ;Y ) + I(X;Y ) + I(W ;X|Y ) + I(X;Z)
+ I(Y ;Z|X) + I(W ;Z|X,Y )

= I(W ;X) + I(W ;Y ) + I(X;Y |W ) + I(X;Z)
+ I(Y ;Z|X) + I(W ;Z|X,Y ). (3.3)

It is worth noting with these saturated models that all the variables must
appear at least once in the main effects, and also among the two-way MI terms,
the three-way CMI terms, and a specified four-way CMI, respectively. For a three-
way contingency table, exactly one of three CV models may be used according to
equation (2.4); and, for a four-way table, there are exactly six distinct saturated
models for each fixed CV, which yields 24 distinct saturated CV models. If both
CV and non-CV models are included, the total number of saturated information
models in four variables would be 72 = (4!) × 3.

3.2 Elementary model selection schemes

Without loss of generality, the information model selection scheme is illus-
trated with a four-way contingency table. The question is how to select a mean-
ingful and parsimonious model among those seventy-two candidate linear infor-
mation models. A selection scheme based on equation (3.2) using a CV is first
outlined below. This is organized as a four-step procedure for ease of exposition.

Step 1 : Select the CV, say Y , either because it is a variable of focus; or, among
the four variables {W,X, Y,Z}, Y yields the maximal significant (in p value, for
a fixed nominal level) sum of three two-way effects, say, twice the sample analog
of I(W ;Y ) + I(X;Y ) + I(Y ;Z).

Step 2 : Find the maximal insignificant (in p value) among the insignificant
four-way CMI (between certain two variables, conditioned upon the chosen CV, Y,
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and the remaining variable). Otherwise, choose the minimal significant, when the
three available four-way CMI are all significantly large. Suppose the chosen four-
way CMI is I(W ;Z|X,Y ), then, the two candidate three-way CMI, I(W ;X|Y )
and I(Z;X|Y ), are directly obtained by reading the appeared variables from the
chosen four-way CMI. Since the three two-way (MI) terms have already been se-
lected in Step 1, a saturated CV information model selection in the four-variable
case is essentially complete. In other words, each variable must appear at least
once among the two-way terms of a saturated model before parsimonious selec-
tion, whether a common CV is in use or not.

Step 3 : To confirm the selected MI and CMI terms, each one of the ten
selected terms (including four main-effect terms) must be individually and sepa-
rately tested against the same nominal level, say, 0.05 in common practice. The
sum of all the insignificantly (small in p value) terms, among the ten terms,
is taken as the tentative remainder which is then tested against the total (chi-
square) d.f., to the same nominal level. This step is asymptotically correct by the
orthogonal likelihood decomposition. If this test is insignificant, then the tenta-
tive remainder is insignificantly small and deleted as an insignificant residual, so
that the tentative model is accepted. Otherwise, the remainder is significantly
large (near or over a 95th percentile of the associated chi-square distribution)
and the tentative model may be lack of sufficient information. In this case, a
simple remedy is recommended. A maximal insignificant (or, a minimal signifi-
cant) high-way CMI term can be replaced by its next term, the second-maximal
insignificant (or, second-minimal significant) CMI; and then, the same selection
procedure is continued with the renewed model modified in Step 2. This rem-
edy as a supplementary scheme is easily used in practice, because it can always
choose the next insignificant (significant) term whenever needed, from high-way
to low-way subtables, while modifying the information decomposition.

Step 4. To conclude a parsimonious model selection after performing the
above three steps, it is often of extra interest, though not necessary, to test
against the summands of each selected CMI term, an interaction term and a
uniform association term (cf. (2.12)), under the same nominal level. Finally, the
new remainder is likewise tested to be a negligible residual, as shown in Step 3,
to yield a more parsimonious model.

It is understood that a general scheme may select either a CV model (3.2), or a
non-CV model (3.3). If there is no need to fix a CV of particular interest, Step 1 is
bypassed, and Step 2 is generalized without requiring a fixed CV throughout the
selection scheme; and, Steps 3 and 4 are kept unchanged. Thus, it is expected that
such a general scheme often results in selecting a non-CV model, more balanced
in selecting the variables among the CMI terms.

On the other hand, there are alternate ways of selecting a model like (3.2)
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or (3.3). As an alternative choice in Step 2, selecting a minimal insignificant
high-way CMI term may be preferred, if any; otherwise, select the minimal (or
maximal) significant high-way CMI term when all such CMI terms are signifi-
cantly large. These alternatives to Step 2 may sometimes yield less high-way
CMI terms compared to the original Step 2, particularly with high-way tables.
However, they usually lead to selecting more terms at end, and sacrifices model
parsimony. It is remarkable that the principal idea in formulaing the models
(3.2) and (3.3) is to delete more high-way CMI terms, compared to the deletion
of high-way interaction terms as a common practice in the selection of a log-linear
model. This will be illustrated below in Section 4, in particular, Example 4.1.
The above three- or four-step model selection scheme can be easily extended to
high-way contingency tables. An application to five-way data table will also be
illustrated in Section 4.

4. Applications to High-Way Tables

Four-way and five-way contingency data tables in the literature will be ex-
amined. The proposed information modeling and the four-step model selection
scheme of Section 3 will be applied to both four-way and five-way data below.
It is entertaining that the proposed method yields easily interpretable and more
parsimonious models compared to those obtained from the hierarchical log-linear
modeling.

Example 4.1: A four-way contingency table

A 3 × 3 × 3 × 3 four-way data frequency table (Agresti, 2002, Table 8.19) is
exemplified for a comparison study. The data consist of three-level individual’s
opinions on each of four variables of government spending. These 81 cell frequency
counts are listed according to the three levels: “too little”, “about right” and “too
much”, defined with the variables: environment (E), health (H), big cities (C),
and law enforcement (L). The basic analysis of this data by log-linear modeling
leads to the accepted model: deletion of the four-way interaction and all the three-
way effects, that is, fitting the data to the summary of the four main effects and
all the six two-way effects (Agresti, 2002, Table 8.20). It is so fitted with the log-
linear modeling because the deviance between this fitted model and the full model
is evaluated to be 31.67, which approximately equals to the 35th percentile of the
chi-square distribution with 48 d.f. Readers may refer to subsequent estimation
of odds ratios parameters to the log-linear model fitting with all two-way effects.

The information modeling begins with finding the most relevant variable to
be the CV, according to Step 1 of the selection scheme as illustrated in Section
3.2. It is found that the variable health (H) yields the greatest significant sum
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of two-way effects, which is 61.87 to the chi-square distribution with 12 d.f. It
then easily follows by Steps 2 and 3 to find that the only significant terms in the
information equation (3.2), using Y = H and X = E, are the two-way effects,
the deviances 2I(C;H) ∼= 28.74 and 2I(E;H) ∼= 24.18. By Step 4, it can be
easily checked that the deviance, the sum of the residual insignificant CMI’s, is
71.59, which is close to the 76th percentile of the chi-square distribution with
64 d.f. A complete selection scheme in accordance with equation (3.2) for the
four-way table is summarized in Table 1 below. Thus, a prototype of information
model selection by equation (3.2) is tentatively concluded with the information
model: “four main effects plus the two-way effects {CH,EH}”, with the total
fitted d.f.= 16, that is only half of 32, the fitted log-linear model of all two-way
effects. This exhibits a basic advantage of information modeling that it usually
selects a more parsimonious model with more concise and simpler explanation
compared to the classical log-linear modeling.

In case another variable is of interest, say, Environment (E), which may be
closely related to budget spending and worth an investigation, then, the variable
(E) can be taken as the CV. It also follows by equation (3.2) and the same
selection scheme that a similar model is selected: “the main effects, plus the
two-way effects {CE,EH}”, for which the remainder deviance is 81.98, close to
the 93.5 percentile of the chi-square distribution with 64 d.f. This provides a
similar CV model selection and interpretation. It can be easily checked from this
four-way data that the other two categories, cities (C) and law enforcement (L),
may not be considered as useful CV, because the selected models will include at
least one three-way CMI term, in addition to the two-way terms and main effects.

In case no particular variable is fixed as CV, it is checked by equation (3.3)
and the same selection scheme (omitting Step 1) would lead to a non-CV model:
“{CE,HL}, plus the four main effects”, for which the remainder deviance is
77.41, close to the 88 percentile of the chi-square (64 d.f.) distribution. This
provides another equally parsimonious information model in which all the four
variables share the two-way effects together in a pair of two-way terms, instead of
all the six two-way terms as used in the selected log-linear model (Agresti, 2002).

The (conditional) odds ratio parameters and the deviances of the above three
selected information models, including interval estimates, can be computed along
with the selection scheme. For brevity, these calculations are not discussed here
for each selected information models, and the readers may contact the authors
for details.
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Table 1: Mutual Information (3.2)

MI, CMI \ values chi-squares d.f. p-values

I(C;L|E,H) 34.90 36 0.55
I(C;E|H) 19.77 12 0.07
I(E;L|H) 7.99 12 0.78
I(H;L) 8.95 4 0.07
I(E;H) 24.18 4 0.001
I(C;H) 28.74 4 0.001

Example 4.2: A five-way contingency table

A data of cross-classification of individuals according to five dichotomized
factors had been studied in six publications prior to Goodman (1978, p.112,
Table 1). The purpose was to understand the association relationship between the
knowledge (good or poor, denoted by K) of cancer, and the presence or absence of
the other four qualitative attributes: L(= lecture), R(= radio), N(= newspaper),
and S(= solid reading). The factor of primary interest is the “knowledge K”, and
hypotheses about the logits of K, plus estimates of the hypothesized effects were
examined by Goodman (1978, Tables 5 to 7) using hierarchical log-linear models.
However, it is so far unknown in the literature whether there are specific criteria
or schemes of selecting a definite, or tentatively entertained, parsimonious log-
linear model, for the present five-way data that had been much discussed prior
to Goodman (1978). It is thus worth investigating the proposed selection scheme
of linear information models, in contrast to the hierarchical log-linear modeling,
for the current five-way data.

According to Step 1 of Section 3.2, it is found that factor K has the maximal
two-way effect with the other variables, which evidences that it was a useful study
design. Let factor K be the CV, a saturated information model can be derived
according to Step 2 as follows.

I(K;L;N ;R;S)
= I(L; (K,N,R, S)) + I(K,N,R, S)
= I(L;N |K,R,S) + I(L; (K,R,S)) + I(S; (K,N,R)) + I(K,N,R)
= I(L;N |K,R,S) + I(L;S|K,R) + I(L; (K,R)) + I(R;S|K,N)

+ I(S; (K,N)) + I(N ; (K,R)) + I(K;R)
= I(L;N |K,R,S) + I(L;S|K,R) + I(L;R|K) + I(K;L) + I(R;S|K,N)

+ I(K;S) + I(N ;S|K) + I(K;N) + I(N ;R|K) + I(K;R). (4.1)
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In the last equation of the saturated model (4.1), it is found that all terms are sta-
tistically significant at the nominal level of 0.05, except a few insignificant terms,
the five-way CMI term I(L;N |K,R,S), and the four-way CMI I(R;S|K,N). By
Step 4, it is checked that “twice the sample sum of I(R;S|K,N)+I(L;N |K,R,S),
or 26.6” is insignificantly small, approximately equal to the 65th percentile on
the chi-square distriubtion with 12 d.f. This yields the linear information model
that exhibits the desired relationship between the CV “Knowledge K” and the
other four variables:

I(K;L;N ;R;S) ∼= I(L;S|K,R) + I(L;R|K) + I(K;L) + I(K;S)
+ I(N ;S|K) + I(K;N) + I(N ;R|K) + I(K;R). (4.2)

For the five-way data, it is notable that the selected information model (4.2)
treats the variable (Knowledge, K) as a response variable. To summarize the
data analysis, Table 2 exhibits the component MI and CMI values of the overall
mutual information, in which most are significantly large, except two high-way
CMI terms; and, the selection scheme confirms only a slight reduction of two
CMI terms by equations (4.1) and (4.2). This presents a case that the variables
defined in the study are highly associated, and very little information reduction
is possible, although information dissemination by model (4.2) yields Table 2.

Table 2: Mutual Information (4.1) and (4.2)

MI, CMI \ values chi-squares d.f. p-values

I(L;N |K,R,S) 10.58 8 0.230
I(R;S|K,N) 2.72 4 0.610
I(L;S|K,R) 20.48 4 < 0.001
I(L;R|K) 15.56 2 < 0.001
I(N ;S|K) 190.89 2 < 0.001
I(N ;R|K) 58.96 2 < 0.001
I(K;L) 17.16 1 < 0.001
I(K;N) 105.78 1 < 0.001
I(K;R) 24.25 1 < 0.001
I(K;S) 150.45 1 < 0.001

As a supplementary note, the possible choices of five-way information models
may be estimated like the previous discussion of four-way models based on equa-
tions (3.2) and (3.3). Equation (4.1) allows five ways of separating one variable
from the other four, which includes a four-variable model (3.2) as part of the whole
model. Thus, the number of saturated five-way CV models is 720 = 5! × 3 × 2,
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and, the number of all saturated five-way models is 5!× (4!× 3) = 25920. Exten-
sions of equations (3.2), (3.3) and (4.1) to multi-way contingency tables appear
to be straightforward.

5. Concluding Remarks

A short summary of the proposed information models and the selection scheme
in Section 3 can be illustrated with a few remarks. The primary purpose of de-
veloping the linear information models is to recommend the natural factorization
of the raw data likelihood, without additional operations on the data. The basic
information identities of Section 2 are used to illustrate the advantages of using
orthogonal information decomposition, directly using the observed data likeli-
hood, but not through the adapted ANOVA. A basic drawback of the latter, the
disadvantage of inevitably crossed and overlapped data information in the sum-
mands of the log-linear models, can be especially intricate with high-way tables,
for which a three-way case was illustrated in the recent literature (Cheng et al.,
2006). Essentially, the classical approach invalidates the development of useful
selection schemes among the hierarchical log-linear models.

The important advantages of linear information models are based on direct
use of the data likelihood identities as illustrated in Section 3 and exemplified
in Section 4. The proposed model selection schemes, either using a CV or not,
are naturally born out of the data likelihood. It is the simplest method based on
comparing data deviances of any possible remainder terms against appropriate
chi-square distributions. Thus, the proposed model identification and selection
schemes offers a fundamental likelihood analysis with observed data. While useful
information model selections still depend on interpreting the data through the
choice of certain CV (or no CV) by the experimenter, it is understood that no
best or uniquely optimal model can be defined whichever selection criterion is
used. Given a natural selection criterion, such as the current proposal, it may
take further study to define optimal model parsimony and selection, together
with some additional selection criteria that would be useful in other statistical
applications.
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