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Abstract: Latent class analysis (LCA) is a popular method for analyzing
multiple categorical outcomes. Given the potential for LCA model assump-
tions to influence inference, model diagnostics are a particulary important
part of LCA. We suggest using the rate of missing information as an addi-
tional diagnostic tool. The rate of missing information gives an indication
of the amount of information missing as a result of observing multiple sur-
rogates in place of the underlying latent variable of interest and provides
a measure of how confident one can be in the model results. Simulation
studies and real data examples are presented to explore the usefulness of the
proposed measure.
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1. Introduction

Latent class analysis (LCA) has a long history in the social and behavioral
sciences (Lazarsfeld, 1950; Lazarsfeld and Henry, 1968; McCutcheon, 1987; Clogg,
1995) and has gained considerable attention in biostatistics over the past two
decades (Garrett, Eaton and Zeger, 2002; Garett and Zeger, 2000; Bandeen-Roche
et al., 1997; Formann, 1996). In general, LCA is used to explain relationships
among multiple categorical variables. Specifically, LCA may be used to describe
the prevalence and symptomatology of a mental disorder or health status that
is measured via multiple indicators or to explore subgroups of the disorder or
disease (Storr et al., 2004; Moran et el., 2004; Nestadt et al., 2003; Fergusson
et al., 1995; Eaton and Bohrnstedt, 1989). In medical diagnostics, LCA may be
used to measure the sensitivity and specificity of diagnostic tests in the absence
of a gold standard (Garrett et al., 2002, Formann, 1996; Butler et al., 2003) or to
develop or evaluate diagnostic criterion (Fossati et al., 2001; Young et al., 1983;
Young, 1982). More recently, latent class models have been extended to regression
settings. Latent class and latent transition regression have been proposed for
quantifying the association between risk factors and latent health status when
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multiple surrogates are collected in lieu of a single adequate measure of health
status (Miglioretti, 2003; Humphreys and Janson, 2000; Bandeen-Roche et al.,
1997; Dayton and Macready, 1988). Growth mixture modeling has been proposed
for identifying and describing subgroups of individuals with different longitudinal
trajectories (Muthen et al., 2002; Muthen, 2004). Latent class survival models
have been proposed for modeling time-to-event data (Rosen and Tanner, 1999;
Lin et al., 2002).

Given the potential for LCA model assumptions to influence inference, nu-
merous model diagnostic methods exist. Numerical model checking statistics
have been proposed for evaluating goodness-of-fit (Reiser and Lin, 1999; For-
mann, 1996; Collins et al., 1993; Dayton and Macready, 1988; Hagenaars, 1988;
Goodman, 1974), lack-of-fit (Rudas, Clogg and Linday, 1994), and identifiability
(Bandeen-Roche et al., 1997; Goodman, 1974; McHugh, 1956, 1958). Graphical
displays have been proposed for evaluating model assumptions and goodness-of-
fit (Miglioretti, 2003; Garrett and Zeger, 2000; Bandeen-Roche et al., 1997) and
checking for weak identifiability of model parameters (Garrett and Zeger, 2000).

In this paper, we propose a complementary model diagnostic measure, the
“rate of missing information,” which provides insight into the value of surrogates
in measuring the latent variable of interest and the usefulness of the fitted latent
class model. This measure may also be used to guide the design of future studies.
The concept of information was introduced to statistics by Fisher in the 1920s.
In the statistical sense, information refers to the amount of information in the
sample about the population parameters of interest. For incomplete data sets,
the amount of missing information can be estimated by the difference between the
hypothetical information given complete data and the observed information in the
incomplete data. The rate of missing information (Rubin, 1987) is the proportion
of the missing information over the complete data information and provides a
measure of how not observing the missing data contributes to uncertainty about
the population parameters of interest. For LCA, this corresponds to the rate
of information missing due to measurement error associated with the observed
outcomes being surrogates of the underlying latent variable.

In LCA, the latent class memberships can be considered missing data, and
the rate of missing information can be easily obtained when multiple imputation
(Rubin, 1987; Schafer, 1997) with data augmentation (Tanner and Wong, 1987)
is used for model estimation. In the LCA setting, the rate of missing information
provides a measure of how observing surrogates in place of the latent variable
of interest contributes to uncertainty about the parameters. We use simulations
to explore how this measure depends on sample size, number of observed items,
class size, class-specific item prevalences, and number of classes. In addition, we
examine how it relates to bias and variability of the parameter estimates and the
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ability to accurately estimate true class membership.
We begin our article with a LCA review and introduction of the rate of missing

information in this context. Next, we provide simulation results. We then apply
these methods to real data examples. We end with a discussion of the proposed
measure.

2. Methods

2.1 Latent class anlaysis

Let Yi = (Yi1, . . . , YiJ)′ denote a vector of binary indicators for the ith in-
dividual; i = 1, . . . , N ; and J observed measures (e.g., diagnostic tests, health
indicators, or some other surrogates of the underlying latent variable of inter-
est). For simplicity, we consider the case of binary observed measures. Ex-
tension to categorical outcomes is straightforward. The basic idea of LCA is
that association among Yi arises because the study population is comprised of
a mixture of subpopulations or classes (e.g., diseased and not diseased individ-
uals in the medical diagnostics context). Let Si ∈ {1, . . . ,K} indicate latent
class membership for ith individual and γk = P (Si = k) represent the preva-
lence of class k. There are two basic assumptions in LCA. First, individuals
have common response probabilities within a class k : ρjk = P (Yij = 1|Si = k).
Second, observed responses yi are independent given class membership Si :
P (Yi1 = yi1, . . . , YiJ = yiJ |Si = k) =

∏J
j=1 P (Yij = yij|Si = k). Given these two

assumptions, the observed data likelihood may be expressed as

N∏
i=1

K∑
k=1

γk

J∏
j=1

ρ
yij

jk (1 − ρjk)
1−yij .

Latent class regression extends the traditional latent class model to allow the
probability of class membership γk to depend on a 1 × P vector of covariates
xi (Dayton and Macready, 1988; Bandeen-Roche et al., 1997) via polytomous
regression:

N∏
i=1

K∑
k=1

γik (xi, β)
J∏

j=1

ρ
yij

jk (1 − ρjk)
1−yij .

Because the latent classes are not necessarily ordered, this relationship is typically
modeled using a generalized logit link:

log
(

γik (xi,βββk)
γiK (xi,βββK)

)
= x

′
iβββk
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where βββK = 0 for identifiability. Each latent class has a unique set of regression
parameters, with the parameters for the reference class (here, the last class) set
equal to zero for identifiability.

2.2 Rate of Missing Information

Latent classes can be viewed as variables that are missing with probability
one; therefore, missing data methodology may be used to fit LCA models. For
example, the EM algorithm has been long used to estimate LCA parameters
(Goodman, 1978). When data are missing with probability one, it implies the
data are missing completely at random (MCAR) (Rubin, 1987) i.e., the missing-
ness (the missing data indicators or the process that causes the missing values)
does not depend on any variable in the study. The common missing at random
(MAR) assumption (Rubin, 1987), for which the missingness may depend on ob-
served data but not on missing data, is a more general assumption that is implied
by the MCAR assumption. In this case one can assume ignorability, and refrain
from modelling the missingness (Schafer and Graham, 2002; Harel and Zhou,
2007).

Multiple imputation (MI) (Rubin, 1987, 1996; Schafer, 1997; Schafer and
Graham, 2002; Harel and Zhou, 2007) is a simulation-based technique to deal
with missing values. Generally speaking, each missing value is replaced with a
set of m > 1 plausible values, resulting in m sets of complete data which differ
only in the imputed values. Analyzing each of the complete data sets, using a
complete-data methodology, and saving the estimates and standard errors of each
set results in m sets of estimates and standard errors. Combining the results using
Rubin’s simple arithmetic rules produces a final result that takes into account
the uncertainty in the data and the uncertainty due to the missing values. When
using MI, the rate of missing information due to missing values (unobserved class
memberships) may be easily estimated (Rubin, 1987).

We assume a joint model for the complete data Ycom = (Yobs,Ymis) and
the missingness M, where Yobs are the observed binary indicators, Ymis are the
missing latent class memberships, and M is the set of missingness indicators that
separate the complete data into the observed and missing parts. To apply MI
in the LCA context, m independent versions of the latent class memberships,
Y(1)

mis, . . . ,Y
(m)
mis, are imputed from P (Ymis|Yobs,M). Because the latent class

memberships are MCAR, we can ignore the missingness model M and impute
from P (Ymis|Yobs). Next, the m sets of original data with imputed class assign-
ment are separately analyzed. Finally, the resulting m sets of point estimates
and standard errors are combined using Rubin’s (1987) rules, described below.

Let Q represent the set of LCA parameters where Q = (γ, ρ) is a JK +K−1
dimensional vector for standard LCA and Q = (β, ρ) is a JK +(K − 1)P dimen-
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sional vector in the latent class regression setting. Let Q̂ = Q̂ (Yobs,Ymis) denote
the estimate for Q if the complete data were available and U = U (Yobs,Ymis)
denote its variance estimate. We assume that with complete data, each parameter
estimate Q̂q follows a normal distribution

(Q̂q − Qq)/
√

Uq ∼ Normal(0, 1). (2.1)

In the absence of Ymis, Y(1)
mis, . . . ,Y

(m)
mis are random versions from which the

imputed-data estimates Q̂(l) = Q̂(Yobs,Y
(l)
mis) and their estimated variances

U(l) = U(Yobs,Y
(l)
mis) are calculated, l = 1, . . . ,m. The overall estimate of Qq is

Q̄q = m−1
∑

Q̂
(l)
q . The estimated total variance for Q̄q is T q = (1+m−1)Bq+Ūq

where Ūq = m−1
∑

U
(l)
q is the estimated complete-data variance and Bq =

(m − 1)−1
∑

(Q̂(l)
q − Q̄q)2 is the between-imputation variance. Tests and con-

fidence intervals may be based on a Student’s t approximation

(Q̄q − Qq)/
√

Tq ∼ tν (2.2)

with ν−1 = 1
(m−1)

[
(1+m−1)Bq

Tq

]2
degrees of freedom.

If Ymis carries no information about Qq, the imputed-data estimates Q̂
(l)
q

would be identical and Tq would reduce to Ūq. Therefore, an estimate of the
rate of missing information due to not observing Ymis, i.e., the rate of missing
information, is

λ̂q =
Ū−1

q − (Tq)−1

Ū−1
q

=
(1 + 1/m)Bq

Ūq + (1 + 1/m)Bq
=

r̂q

1 + r̂q
(2.3)

where r̂q = (1+1/m)Bq/Ūq. In LCA, this measure represents the rate of informa-
tion missing due to the lack of knowledge about the individual class memberships,
which can be translated to the model measurement error due to using the ob-
served surrogates in lieu of the latent class memberships. If class memberships
were observed, there would be no missing information, and hence the measure-
ment error would be eliminated.

For LCA, the unobserved class memberships Ymis can easily be imputed based
on the posterior probabilities of class membership given the observed data and
parameter estimates. To fully incorporate the variability of the estimated pa-
rameters, the posterior probabilities of class memberships may be calculated
for each imputation by drawing parameter values from their posterior distri-
bution as in data augmentation (Lanza et al., 2005) or by drawing values from
a multivariate normal distribution with mean and covariance equal to the maxi-
mum likelihood estimates. Given the imputed class memberships Y(1)

mis, . . . ,Y
(m)
mis,
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the Binomial distribution may be used to estimate the model parameters given
the complete data Q̂(1), . . . , Q̂(m) and the corresponding complete data variances
Û(1), . . . , Û(m). For example, γk = P (Si = k) may be estimated as the proportion
of subjects in each latent class nk/N with variance given by γ̂k(1 − γ̂k)/N . The
class specific item prevalences ρjk may be estimated as the number of subjects
in class k with the item j equal to 1 with variance ρ̂jk(1 − ρ̂jk)/nk. For latent
class regression (LCR), the regression coefficients and their variances given the
imputed class memberships Y(1)

mis, . . . ,Y
(m)
mis, may be estimated using standard

complete-data polytomous regression.

3. Simulations

To explore the traits of the rate of missing information in the latent class
setting we conducted a simulation study. We focus on two class models, because
it is easier to manipulate the parameters in a systematic way to study the resulting
behavior. We first explore the traditional LCA case, and then look at the LCR
settings.

3.1 Latent class analysis

For our first simulation in the LCA settings, we generated 100 simulated data
sets from 32 models with two latent classes as follows: The prevalence of class 1,
γ1, was set to 0.6 or 0.8 and the response probabilities given class membership,
ρ, were set to 0.10, 0.15, 0.20, or 0.25 for class 1 and 0.90, 0.85, 0.80, or 0.75
for class 2. Data were generated from models with four and five items with
sample sizes of 100 and 1000. We imputed 100 sets of class memberships from
the posterior probabilities of class membership given the observed data after
sampling 100 sets of parameter values from a multivariate normal distribution
with mean and variance estimated from the LCA model and calculated the rates
of missing information as described in the methods section. The mean rates of
missing information across the 100 simulated data sets are summarized in Table
1. There was very little variation in the rates of missing information across ρ
values within the same class, so the mean value across the four or five ρ values
are presented for simplicity.

The most notable changes in the rate of missing information occurs with
changes in the response probabilities. Response probabilities near 0.5 indicate a
higher degree of measurement error, which is reflected in the dramatic increase
in the rate of missing information as ρ moves from 0.10 and 0.90 towards 0.25
and 0.75 for classes 1 and 2, respectively. The rate of missing information is also
a function of the number of items, with lower values for models with 5 items
compared to those with only 4 items. The rate of missing information is lower
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Table 1: Mean rates of missing information from 100 simulated LCA data sets
under 32 conditions.

Rate of missing information
Number Parameter Value N = 100 N = 1000

of items γ1 γ2 ρ1 ρ2 γ ρ1 ρ2 γ ρ1 ρ2

4 0.6 0.4 0.25 0.75 0.76 0.50 0.58 0.83 0.55 0.63
4 0.6 0.4 0.20 0.80 0.57 0.39 0.49 0.60 0.40 0.48
4 0.6 0.4 0.15 0.85 0.33 0.29 0.36 0.32 0.27 0.34
4 0.6 0.4 0.10 0.90 0.12 0.17 0.22 0.12 0.16 0.21
4 0.8 0.2 0.25 0.75 0.68 0.35 0.58 0.87 0.47 0.74
4 0.8 0.2 0.20 0.80 0.54 0.29 0.52 0.66 0.33 0.59
4 0.8 0.2 0.15 0.85 0.32 0.19 0.41 0.37 0.20 0.44
4 0.8 0.2 0.10 0.90 0.13 0.11 0.26 0.14 0.11 0.29
5 0.6 0.4 0.25 0.75 0.62 0.37 0.45 0.70 0.40 0.48
5 0.6 0.4 0.20 0.80 0.41 0.28 0.34 0.42 0.26 0.34
5 0.6 0.4 0.15 0.85 0.19 0.17 0.23 0.17 0.15 0.20
5 0.6 0.4 0.10 0.90 0.06 0.09 0.12 0.05 0.07 0.10
5 0.8 0.2 0.25 0.75 0.63 0.29 0.53 0.77 0.33 0.61
5 0.8 0.2 0.20 0.80 0.39 0.18 0.40 0.48 0.21 0.44
5 0.8 0.2 0.15 0.85 0.18 0.10 0.26 0.22 0.12 0.29
5 0.8 0.2 0.10 0.90 0.06 0.05 0.15 0.06 0.05 0.15

Table 2: Mean rates of missing information from 100 simulated data sets under
12 conditions where γ1 = 0.5 and ρ’s are changing ρ2j = 1 − ρ1j .

Sample Parameter Value Rate of missing information

size γ1 ρ11 ρ12 ρ13 ρ14 ρ15 γ1 ρ11 ρ12 ρ13 ρ14 ρ15

100 0.5 0.25 0.25 0.25 0.25 0.25 0.66 0.46 0.43 0.44 0.42 0.42
100 0.5 0.25 0.25 0.25 0.25 0.10 0.43 0.27 0.26 0.25 0.26 0.54
100 0.5 0.25 0.25 0.25 0.10 0.10 0.26 0.14 0.14 0.15 0.38 0.39
100 0.5 0.25 0.25 0.10 0.10 0.10 0.16 0.09 0.09 0.25 0.24 0.25
100 0.5 0.25 0.10 0.10 0.10 0.10 0.10 0.06 0.17 0.17 0.17 0.17
100 0.5 0.10 0.10 0.10 0.10 0.10 0.06 0.11 0.13 0.11 0.10 0.11
1000 0.5 0.25 0.25 0.25 0.25 0.25 0.70 0.44 0.45 0.45 0.45 0.44
1000 0.5 0.25 0.25 0.25 0.25 0.10 0.49 0.26 0.26 0.26 0.26 0.62
1000 0.5 0.25 0.25 0.25 0.10 0.10 0.28 0.14 0.15 0.14 0.38 0.40
1000 0.5 0.25 0.25 0.10 0.10 0.10 0.15 0.08 0.08 0.23 0.25 0.24
1000 0.5 0.25 0.10 0.10 0.10 0.10 0.09 0.05 0.15 0.15 0.15 0.15
1000 0.5 0.10 0.10 0.10 0.10 0.10 0.04 0.09 0.08 0.08 0.09 0.08
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Table 3: Percent bias and variance of parameter estimates and percent agree-
ment of predicted and true class membership from 100 simulated LCA data
sets under 16 conditions.

Number Sample Parameter Value Percent Bias Variance (×102) Percent

of items size γ1 ρ1 ρ2 γ ρ1 ρ2 γ ρ1 ρ2 agreement
4 100 0.6 0.25 0.75 -2.2 -5.0 -0.4 2.17 0.95 1.63 0.79
4 100 0.6 0.20 0.80 1.4 1.1 0.8 0.70 0.42 0.88 0.88
4 100 0.6 0.15 0.85 -0.8 -2.3 -0.2 0.39 0.31 0.53 0.93
4 100 0.6 0.10 0.90 -0.3 0.1 -0.2 0.30 0.17 0.33 0.97
4 1000 0.6 0.25 0.75 -0.5 -0.6 0.1 0.17 0.08 0.13 0.81
4 1000 0.6 0.20 0.80 0.3 -0.8 0.1 0.05 0.04 0.08 0.88
4 1000 0.6 0.15 0.85 0.3 0.3 0.0 0.04 0.03 0.05 0.93
4 1000 0.6 0.10 0.90 -0.0 -0.1 -0.1 0.03 0.02 0.03 0.97
5 100 0.6 0.25 0.75 -0.6 -3.1 0.7 1.30 0.66 1.36 0.83
5 100 0.6 0.20 0.80 -0.6 -3.5 0.2 0.49 0.43 0.66 0.91
5 100 0.6 0.15 0.85 0.3 -0.8 0.4 0.31 0.27 0.45 0.95
5 100 0.6 0.10 0.90 -0.9 1.7 0.1 0.28 0.17 0.27 0.98
5 1000 0.6 0.25 0.75 0.2 0.2 0.4 0.08 0.06 0.09 0.84
5 1000 0.6 0.20 0.80 0.9 0.4 0.1 0.04 0.04 0.05 0.91
5 1000 0.6 0.15 0.85 0.3 0.3 -0.0 0.04 0.03 0.04 0.96
5 1000 0.6 0.10 0.90 0.1 -1.2 -0.0 0.03 0.02 0.03 0.98

for classes with larger prevalences; however, there are no consistent patterns when
comparing models fit to 100 versus 1000 observations.

In a second set of simulations, we varied the number of items with low mea-
surement error (response probabilities of 0.10 and 0.90) and moderate measure-
ment error (response probabilities of 0.25 and 0.75). The prevalence of class 1
was set to 0.50 for sample sizes of 100 and 1000 and five items. Equal class sizes
were chosen to simplify reporting of results, because this would result in about
equal rates of missing information for class 1 and class 2 parameters. Response
probabilities for class 1 were set as follows: For model 1, we set one ρ to 0.10 the
remaining four ρ’s to 0.25. For model 2, we set two ρ’s to 0.10 and the remaining
three ρ’s to 0.25. Similarly, for models 3 and 4, we set 3 and 4 ρ’s to 0.10 and
the remaining ρ’s were set to 0.25. The ρ values for class 2 were set equal to 1
minus the values for class 1. Models with 0 and 5 ρ’s equal to 0.10 and 0.90 were
included for comparison.

Table 2 displays the results from the second simulation. As expected given the
equal class sizes, the rate of missing information was similar for class 1 and class 2
parameters; therefore, we only present results for class 1. Increasing the number
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of items with low measurement error reduces the rates of missing information
for the class prevalence γ and the response probabilities ρ with the same value;
however, somewhat surprisingly, within a model, the rate of missing information
is larger for items with lower measurement error, i.e., the values closer to zero
or one compared to values closer to 0.5. As in the first simulation, there are no
clear patterns with increasing sample size.

To better understand how the rate of missing information may provide insight
into the value of surrogates in measuring the latent variable of interest and the
usefulness of the fitted latent class model, we examined the finite sample bias and
variability of the estimated parameter values for the simulated data sets (Table
3). Percent bias was defined as the difference between the mean of the estimated
parameter values across the 100 simulated data sets and the true parameter value
divided by the absolute value of the true parameter value. The variance across
the 100 imputed data sets was also calculated. For all cases, the bias is very
small. In general, both the bias and variance decrease as the rate of missing
information decreases in addition to increasing sample size. This might suggest a
connection between the rates of missing information and the required sample size
for asymptotic results to hold. In other words, as the rates of missing information
increase, a larger sample size is needed to get unbiased estimates.

We also estimated the percent agreement between the predicted and the true
latent class memberships (Table 3). Class memberships were imputed from the
posterior probabilities of class membership given the observed data and the max-
imum likelihood parameter estimates. The percent agreement follows the same
pattern as the rates of missing information; the percent agreement is higher for
models with lower rates of missing information. Roughly, for rates of missing in-
formation above 50%, the percent agreement is less than 90%. Thus, the rate of
missing information sheds light on the usefulness of the surrogates for classifying
individuals.

3.2 Latent class regression

We also conducted a simulation study for LCR to understand the behavior
of the rate of missing information in the regression setting. We modeled the
probabilities of class membership as a function of two covariates x where x1 is
a binary variable with prevalence 0.6 and x2 is a continuous variable sampled
from a normal (0, 1) distribution. We set β0 = 0.4, β1 = 1, and β2 = −1.
The response probabilities, sample size, and number of items were varied as in
the first simulation for LCA. We imputed 100 sets of class memberships from
the posterior probabilities and estimated the rates of missing information for the
class-specific item prevalences using the binomial distribution, as described above.
Regression coefficients were estimated from the 100 sets of complete-data using
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logistic regression, and results were combined to estimate the rates of missing
information using PROC MIANALYZE available in SAS version 8.2 or higher
(SAS Institute, Inc., Cary, NC).

The rates of missing information for the LCR models are summarized in
Table 4. As before, the most notable change in the rates of missing information
occur with the change of response probabilities. Increasing the number of items
decreases the rates of missing information, while the sample size does not have
much of an effect.

Table 4: Mean rates of missing information from 100 simulated LCR data sets
under 16 conditions where β0 = 0.4, β1 = 1, and β2 = −1.

Item Sample ρ Value Rate of missing information

number size ρ1 ρ2 β0 β1 β2 ρ1 ρ2

4 100 0.25 0.75 0.53 0.38 0.44 0.45 0.51
4 100 0.20 0.80 0.40 0.30 0.33 0.42 0.44
4 100 0.15 0.85 0.22 0.17 0.19 0.31 0.34
4 100 0.10 0.90 0.08 0.07 0.08 0.18 0.21
4 1000 0.25 0.75 0.66 0.45 0.50 0.53 0.55
4 1000 0.20 0.80 0.43 0.30 0.34 0.43 0.44
4 1000 0.15 0.85 0.22 0.16 0.18 0.31 0.31
4 1000 0.10 0.90 0.09 0.07 0.08 0.20 0.21
5 100 0.25 0.75 0.49 0.35 0.41 0.41 0.43
5 100 0.20 0.80 0.29 0.23 0.25 0.30 0.33
5 100 0.15 0.85 0.14 0.11 0.13 0.20 0.22
5 100 0.10 0.90 0.05 0.04 0.05 0.11 0.12
5 1000 0.25 0.75 0.52 0.37 0.41 0.43 0.44
5 1000 0.20 0.80 0.29 0.22 0.25 0.31 0.31
5 1000 0.15 0.85 0.14 0.11 0.13 0.20 0.20
5 1000 0.10 0.90 0.04 0.04 0.04 0.10 0.10

The bias and variance of the LCR parameter estimates from the simulated
data are shown in Table 5. We only report the values for the β vector, because
the information for the other parameters was discussed in the previous section.
The percent bias, while generally small, is larger for the regression coefficients
compared to the class and item-specific prevalences described in the previous
section. As in the previous simulation, the variance decreases with decreasing
rates of missing information and increasing sample size; however, the pattern is
less consistent for the percent bias. A noteworthy result is that the bias for β1

and β2 are away from the null, i.e., the absolute size of the regression coefficients
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tend to be overestimated. The bias may be large enough in the models with 100
subjects to be of potential concern – A 16% bias on the log-odds scale results in an
odds ratio of 2.7 being overestimated as 3.2. This is in contrast with the influence
of nondifferential misclassification which is known to bias risk estimates towards
the null (Copeland et al., 1977; Flegal et al., 1986). In the latent class regression
setting, which attempts to correct for misclassification, it seems plausible that
any potential finite-sample bias may be away from the null, because covariates
are also being used to help identify an individual’s true class membership. This
may tend to maximize the estimated relationship between the covariates and class
membership in small samples.

Table 5: Percent bias and variance from 100 simulated LCR data sets under
16 conditions where β0 = 0.4, β1 = 1, and β2 = −1.

Number Sample ρ Value Percent Bias Variance

of items size ρ1 ρ2 β0 β1 β2 β0 β1 β2

4 100 0.25 0.75 0.7 0.5 -9.0 0.538 0.468 0.259
4 100 0.20 0.80 -6.0 8.4 -11.8 0.383 0.454 0.194
4 100 0.15 0.85 10.8 3.7 -10.1 0.159 0.285 0.163
4 100 0.10 0.90 7.7 -2.7 -2.1 0.160 0.283 0.162
4 1000 0.25 0.75 -1.6 0.3 -1.9 0.043 0.049 0.020
4 1000 0.20 0.80 -1.3 5.8 -0.8 0.021 0.037 0.010
4 1000 0.15 0.85 2.4 0.9 -0.2 0.017 0.028 0.010
4 1000 0.10 0.90 0.7 2.0 0.7 0.012 0.025 0.008
5 100 0.25 0.75 10.5 15.9 -14.5 0.358 0.693 0.258
5 100 0.20 0.80 -7.3 9.5 -4.6 0.254 0.482 0.215
5 100 0.15 0.85 15.2 0.2 -10.7 0.158 0.215 0.110
5 100 0.10 0.90 17.3 5.5 -7.9 0.155 0.311 0.114
5 1000 0.25 0.75 5.3 -0.4 -1.2 0.027 0.041 0.015
5 1000 0.20 0.80 1.1 1.7 -0.6 0.020 0.037 0.010
5 1000 0.15 0.85 4.3 0.8 -1.3 0.016 0.034 0.009
5 1000 0.10 0.90 -2.1 1.8 -1.1 0.016 0.032 0.007

4. Examples

To illustrate the proposed measure, we reanalyze data from two previously
published studies. The first is a latent class analysis presented by Garrett and
Zeger (2000) on depression from the Epidemiologic Catchment Area Program.
The second is a latent class regression analysis presented by (Badeen-Roche et
al., 1997) on mobility disability from the Woman’s Health and Aging Study.
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4.1 Latent class analysis

The National Institute of Mental Health (NIMH) Epidemiologic Catchment
Area Program (ECA) is a five-site epidemiologic study focusing on mental health
(Eaton, Reiger and Locke, 1981). Garrett and Zeger (2000) analyzed data from
2,938 individuals interviewed at the Baltimore site in 1981. The goal was to use
17 questions from the NIMH Diagnostic Interview Schedule to measure 6-month
prevalence of depression. These questions were grouped into 9 items (see Table
6) and analyzed using latent class analysis fitted using a Bayesian approach.
Garrett and Zeger (2000) concluded that three class model is ”statistically the
most appropriate.” The four class model was not well identified and the three-
class model was judged to fit better than the two class model.

We reanalyzed the data using the freeware WinLTA1 (Collins et al., 1999;
Collins et al., 2001). WinLTA uses the EM algorithm to find the maximum like-
lihood estimate and data augmentation (DA) for Bayesian estimation, variance
estimation, and multiple imputation. When using the DA tab in winLTA for
multiple imputation, the rates of missing information are given as a default. The
maximum likelihood estimates for two and three class models are summarized in
Table 6 and are similar to the results of Garrett and Zeger (2000), though some
small differences exist due to the different fitting approaches.

Table 6: Two and three class model estimates and rates of missing information
for the ECA depression data

Two Classes Three Classes
Rate of Rate of

Estimate missing info Estimate missing info
Depression Status: No Yes No Yes No Minor Major No Minor Major
Symptom Prevalence
Dysphoria 0.02 0.41 0.34 0.25 0.01 0.23 0.77 0.61 0.70 0.70
Loss of appetite 0.06 0.45 0.17 0.23 0.05 0.33 0.68 0.48 0.59 0.44
Insomnia, Hypersomnia 0.06 0.63 0.33 0.33 0.04 0.49 0.81 0.62 0.69 0.47
Slow movement, Restless 0.02 0.42 0.37 0.27 0.01 0.24 0.77 0.54 0.74 0.63
Disinterest in sex 0.01 0.20 0.22 0.15 0.01 0.12 0.34 0.44 0.57 0.32
Reduced energy, Fatigue 0.03 0.49 0.26 0.24 0.02 0.32 0.77 0.45 0.74 0.45
Guilty, Sinful 0.00 0.27 0.36 0.23 0.00 0.12 0.62 0.56 0.65 0.67
Reduced concentration 0.02 0.40 0.25 0.27 0.01 0.21 0.77 0.50 0.71 0.72
Thoughts of suicide 0.06 0.52 0.21 0.30 0.05 0.38 0.77 0.45 0.62 0.62
Class prevalence 0.87 0.13 0.50 0.50 0.81 0.16 0.03 0.85 0.76 0.85

When fitting a two class LCA model, the classes may be defined as a not
depressed group and a depressed group. The depressed group, comprising 13%
of the population, has moderate to high probabilities of all symptoms (20-63%)

1Available at http://methodology.psu.edu/downloads/winlta.html
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with an average of about four total reported symptoms per person. The majority
of the population (87%) are not depressed and thus have very low probability
of reporting any symptoms (< 6%). The three class model has a not depressed
group and two depression groups which we labeled minor and major depression.
The minor depression group has a prevalence of 16% and has low to moderate
probabilities for all symptoms (12-49%), with an average of about two symptoms
per person. The major depression group, comprising only a small fraction of the
population (3%), has high probability of all symptoms (34-81%) with an average
of six symptoms per person.

The rates of missing information are reasonable for the two class model
(20% − 30%), but moderate to high for the three class model (40% − 70%).
This suggests there is sufficient information in these nine symptoms to reliably
classify individuals into depressed versus not depressed groups; however, there
may not be enough information to reliably distinguish people with minor depres-
sion. This is consistent with the findings of (Gartett, Eaton and Zeger, 2002),
who used a latent class approach to evaluate diagnostic criteria for depression.
Based on the positive and negative predicted values estimated from the model,
they concluded these nine symptoms provide essentially no information about
minor depression. This is supported by the psychiatric literature, which has not
yet developed consistently used criteria for diagnosing minor depression (Pincus,
Davis and McQueen, 1999). The Diagnostic and Statistical Manual of Mental
Disorders 4th edition (DSM-IV) defines widely accepted criteria for diagnosing
major depressive disorder; however, criteria for minor depression is described
in Appendix B with mental disorders that are considered to have “insufficient
information to include as official categories” (APA, 1994).

4.2 Latent class regression

For the LCR analysis example we used the data previously analyzed by
(Bandeen-Roche et al., 1997) from the Women’s Health and Aging Study (WHAS),
a study of the course of disability among moderately and severely disabled el-
derly women in Baltimore, Maryland. The WHAS study followed 1,002 disabled
women aged 65 and older from November 1992 to February 1995. For this study
we use population-based data from 3,543 women that were interviewed as part
of the baseline screener.

The WHAS instrument included self-reported measures of disability, disease,
and demographics. Following the analysis in Bandeen-Roche et al. (1997), we an-
alyzed data from the following items that characterize mobility disability: “With-
out help, do you have any difficulty [doing a specific task]?” walking 1

4 mile, climb-
ing 10 steps, lifting up to 10 pounds, and getting in and out of bed or a chair. We
regressed latent mobility disability status on age and arthritis status. We fit the
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LCR model using a SAS (SAS Institute, Inc., Cary, NC) macro written by the sec-
ond author2. This macro uses the EM algorithm with a Newton-Raphson step to
find the maximum likelihood estimates for the model parameters (Bandeen-Roche
et al., 1997). The results for the two and three class models are summarized in
Table 7. Bandeen -Roche et al. (1997) concluded the three class model provided
a reasonable fit to the data.

To estimate the rates of missing information, we imputed 100 sets of class
memberships from the posterior probabilities of class membership after sampling
100 sets of parameter values from a multivariate normal distribution with mean
and variance estimated from the LCR model. Regression coefficients were esti-
mated from the imputed data sets using polytomous regression and results were
combined to estimate the rates of missing information using SAS’s PROC MI-
ANALYZE (SAS Institute, Inc., Cary, NC).

Table 7: LCR two and three class parameter estimates and rates of missing
information for the WHAS mobility disability example.

Two Classes Three Classes
Rate of Rate of

Estimate missing info Estimate missing info
Disability status: No Yes No Yes No Mild Severe No Mild Severe
Item prevalences
Heavy housework 0.12 0.89 0.38 0.33 0.05 0.66 0.95 0.86 0.86 0.72
Walk 1/4 mile 0.12 0.83 0.33 0.29 0.06 0.57 0.94 0.78 0.84 0.78
Climb 10 steps 0.03 0.62 0.34 0.24 0.02 0.24 0.88 0.65 0.83 0.91
Lift 10 pounds 0.04 0.67 0.39 0.25 0.02 0.37 0.82 0.76 0.83 0.70
Getting in/out chair 0.02 0.39 0.22 0.14 0.01 0.14 0.57 0.50 0.76 0.68
Class Prevalence 0.64 0.36 0.34 0.34 0.52 0.29 0.19 0.85 0.76 0.86
Intercept 1.65 ref 0.30 ref 2.47 1.19 ref 0.68 0.50 ref
Age -0.08 ref 0.17 ref -0.10 -0.04 ref 0.58 0.27 ref
Arthritis -1.47 ref 0.19 ref -1.92 -0.78 ref 0.26 0.47 ref

The two class model shows 64% of women with no disability, having a low
probability of reporting difficulty with any tasks (2-12%). The remaining 36%
of women may be considered to have mobility disability, with high prevalence of
task difficulties (39-89%) and on average, reporting difficulty with 3.4 of the 5
tasks. The odds of being in the disabled group is 4.3 times greater for women with
arthritis (95% CI = 3.6 to 5.2) and 2.2 times greater for every 10 year increase
in age (95% CI = 2.0 to 2.5).

The three class model shows 52% of women in the no disability group with very
low probability (< 6%) of difficulty with any task. Twenty-nine percent of women
may be considered to have mild disability, with low to moderate probability of
difficulty with each task (14-66%) and an average of 2 reported task difficulties.

2Available at http://www.centerforhealthstudies.org/perpages/migliore/software.html
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The remaining 19% of women fall in the severe disability group with a high
probability of task difficulties (57-95%) and reported difficulty with an average of
4 out of 5 tasks. The odds of being in the severe versus the no disability group is
6.8 times higher for women arthritis (95% CI = 5.2 to 8.9) and 2.9 times higher
for every 10 year increase in age (95% CI = 2.5 to 3.3). The odds of being in
severe versus the mild disability group is 2.2 times higher for women with arthritis
(95% CI = 1.6 to 3.0) and 1.3 times higher for every 10 year increase in age (95%
CI = 1.3 to 1.8).

The rates of missing information are high for three class model (50% − 80%)
but reasonable for two class model (20% − 40%). This suggests that these items
can be reliably used to classify patients into a healthy group of women who
rarely report difficulty with any task and a disabled group with high probability of
difficulty with three or more tasks; however, there may not be enough information
in these items to reliably distinguish between women with mild versus severe
disability. Despite this, given the large sample size, we may still be able to
correctly quantify the influence of arthritis and age on the probability of being
mild versus severely disabled based on the latent class regression model; however,
uncertainty will be larger than for the two class model. Because Bandeen-Roche
et al. (1997) found that the three class model fit the data better than the two
class model, the three class model is preferable for making inference about the
association between risk factors and disability.

5. Discussion

In this paper we introduce the rate of missing information in the context of
LCA and explore the use of this measure as a diagnostic tool for latent class
analysis and regression. The rate of missing information gives an indication of
the amount of information missing as a result of observing multiple surrogates in
place of the underlying latent variable of interest, and provides a measure of how
confident one can be in the model results. If inference is based on high levels of
missing information, one might be skeptical about the accuracy and usefulness
of the LCA results, especially in small samples.

As demonstrated in the simulation studies and examples, the rates of missing
information can be used to assess the potential of symptoms or other surrogates
to be used as diagnostic criteria in the absence of a gold standard. Models
with high rates of missing information (rates above approximately 50%) do not
predict true class membership well and indicate the need for additional symptoms
or surrogates with less measurement error for accurate classification. The rate
of missing information may also be valuable for the design of future studies. By
knowing if items have a strong effect on the rate of missing information, one can
plan to add items, change items, or put emphasis on item quality in future studies.
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In addition, high rates of missing information indicate that larger samples sizes
are needed to obtain precise and unbiased estimates of the latent class model
parameters.

The rate of missing information may also be useful when estimating diag-
nostic accuracy in absence of a gold standard. The rate of missing information
provides a measure of whether it is appropriate to use LCA for measuring sensi-
tivity, specificity, and prevalence. Based on our simulation results, if all tests have
low sensitivity and specificity, there is likely to be a large amount of information
missing by not directly observing a gold standard, and therefore, there is less
faith in the latent class results. However, the addition of one or two tests with
high sensitivity and specificity, say around 90%, is likely to increase the amount
of information about all model parameters including the sensitivities and speci-
ficities of the other tests plus disease prevalence. If tests with high sensitivity and
specificity are unavailable, larger sample sizes will be required to obtain precise
and unbiased estimates.

When the observed data is incomplete, the missing data can be separated
into two types, the missing latent class memberships and the missing surrogate
values. Using two-stage MI (Harel, 2003), it would be interesting to separate the
effect of the missing class memberships and the effect of the missing values on
the overall uncertainty of the model. This is a topic for future study.

An unintended result of our simulation study was to find that latent class
regression may bias risk estimates away from the null in small samples. In the
case of 100 subjects, an odds ratio of 2.7 was overestimated to be as large as
3.2 on average. Future work should examine this issue in more detail. Until this
potential bias is be better understood, care should be taken when fitting latent
class regression models to small samples.
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