
Journal of Data Science 5(2007), 259-267

Automated Linking PUBMED Documents with GO Terms
Using SVM

Su-Shing Chen and Hyunki Kim
University of Florida, Gainesville

Abstract: We have developed an automated linking scheme for PUBMED
citations with GO terms using SVM (Support Vector Machine), a classifica-
tion algorithm. The PUBMED database has been essential to life science re-
searchers with over 12 million citations. More recently GO (Gene Ontology)
has provided a graph structure for biological process, cellular component,
and molecular function of genomic data. By text mining the textual content
of PUBMED and associating them with GO terms, we have built up an
ontological map for these databases so that users can search PUBMED via
GO terms and conversely GO entries via PUBMED classification. Conse-
quently, some interesting and unexpected knowledge may be captured from
them for further data analysis and biological experimentation. This paper
reports our results on SVM implementation and the need to parallelize for
the training phase.

Key words: Classification, gene ontology, support vector machines.

1. Introduction

With the exponential growth of biomedical data, life science researchers have
met a new challenge - how to exploit systematically the relationships between
genes, sequences and the biomedical literature (Yandell and Majoros, 2002). Usu-
ally most of known genes are found in the biomedical literature and PUBMED
is a worthy database for this kind of information. PUBMED, developed by
the U.S. National Library of Medicine (NLM), is a database of indexed bibli-
ographic citations and abstracts (National Library of Medicine). It contains over
4,600 biomedical journals. PUBMED citations and abstracts are searchable via
PUBMED1 or the NLM Gateway2. The biomedical literature has much to say
about gene sequence, but it also seems that sequence can tell us much about the
biomedical literature. Currently, highly trained biologists read the literature and

1http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
2http://gateway.nlm.nih.gov/gw/Cmd

260 Su-Shing Chen and Hyunki Kim

manually select appropriate Gene Ontology (GO) terms to annotate the litera-
ture with GO terms. Gene Ontology database has more recently been created to
provide an ontological graph structure for biological process, cellular component,
and molecular function of genomic data (Smith et al., 2003).

McCray et al. (2002) show that the GO is suitable as a resource for natural
language processing (NLP) applications because a large percentage (79%) of the
GO terms have passed the NLP parser. They also show that 35% of the GO
terms were found in a corpus collected from the MEDLINE database3 and 27%
of the GO terms were found in the current edition of the Unified Medical Lan-
guage System (UMLS). A recent research work of Raychaudri et al. employs a
“maximum entropy” technique to categorize 21 GO terms using training and test
documents extracted from PUBMED using handcrafted keyword queries. Their
study reports that their models trained on PUBMED documents published prior
to 2001 achieved an accuracy of 72.8% when tested on documents published in
2001 (Raychaudhuri et al., 2002). Another work of T. C. Smith et al. completed
in April 2003 shows that about 110,000 PUBMED abstracts can be linked to the
Gene Ontology (Smith and Cleary, 2003). In order to compare with (Raychaud-
huri et al., 2002), it ran on the same 21 categories achieved an accuracy of 70.5%
(at the precision-recall breakeven point).

Although these research works demonstrate that NLP is applicable to GO and
PUBMED database can be linked to GO terms, there are inherently challenging
issues to fully exploit both PUBMED and GO databases. One of them is that
there are too many class categories (i.e. GO terms) in the GO because the GO is
a large, complex graph in itself. For example, in the GO database released as of
February 2005, there were a total of 17,593 terms (Gene Ontology Consortium4).
Furthermore, GO grows in coverage and evolves in a monthly cycle. Finally,
PUBMED contains over 12 million article citations. Beginning in 2002, it began
to add over 2,000 new references on a daily basis (National Library of Medicine).

In order to organize the PUBMED contents in a systematic and useful way, we
believe that text classification and text clustering should be exploited extensively.
Perhaps, due to the large scale of PUBMED, it is also important to look for
parallel and scaling-up algorithms. Text classification is a ”boiling down” of
the specific content of a document into a set of one or more pre-defined labels
(Hearst, 1999). Text clustering can group similar documents into a set of clusters
based on shared features among subsets of the documents (Chakrabarti, 2000;
Chen et al., 1996; Kohonen, 1998). In this paper, we have implemented a text
classification system using SVM that can automatically link PUBMED citations

3National Library of Medicine: MEDLINE Fact Sheet.
http://www.nlm.nih.gov/pubs/factsheets/medline.html

4See Gene Ontology Consortium: Gene Ontology. http://www.geneontology.org/.

Automated Linking Using SVM 261

with GO terms. The performance measure for three data sets of small, medium
and large sizes is excellent except training time. Then we examine the scalability
of the SVM algorithm for training time. From the performance results of the three
dataset sizes, we conclude that SVM must be scaled up using grid computers for
its most computation-intensive task: training.

2. Implementation

First we consider basic terminology of text classification. Given a fixed set
of classes C = {c1, . . . , cn}, a training instance is a pair (di, ci), where di is a
document represented as a vector of m attribute values

−→
d i =< w1, . . . , wm >,

depicting m easurements made on the vocabulary V = {W1, . . . ,Wm}, and c∈C
is a class label associated with di for a given instance. A training set S is a set of
labeled instances S = {(v1, c1), . . . , (vm, cm)}. The goal in document classification
is to infer a classification rule from the training set S so that it classifies new
examples with high accuracy (Joachims, 2001).

The naive Bayes (NB) classifier is a probabilistic classification method (Lewis,
1998). NB is based on the Bayes’ theorem and the naive Bayes independence as-
sumption. Bayes’ theorem says that to achieve the highest classification accuracy,
a document d should be assigned to the class ci for which P (ci|d) is highest. The
naive Bayes independence assumption states that the probability of a word wi

is independent from any other word wj given that the cass is known. Although
this assumption is clearly false, it allows the easy estimation of the conditional
probability P (Wj|ci). In the learning phase, NB estimates the class prior proba-
bilities P (ci) and the conditional probability of each attribute wi given the class
label ciP (Wj|ci). The estimated P (ci) is

P (ci) =
|ci|
|S|

where |ci| denotes the number of training documents in class ci and |S| is the
total number of training documents.

Given a new document d =< w1, . . . , wm >, NB predicts the class as the one
with the highest probability of ci:

P (Wj |ci) =
1 + TF (Wj , ci)

|V | + ∑
W ′∈V TF (W ′, ci)

where |V | is the total number of attributes in V and TF (W, ci) is the overall
number of times word w occurs within the documents in class ci.

At training time, NB requires linear time both to the number of training
documents and to the number of features and thus its computational requirements

262 Su-Shing Chen and Hyunki Kim

Table 1: Description of datasets

Dataset GO Term GO ID #Train #Test

homeostasis GO:0001116 14919 6396
tissue regeneration GO:0012976 17542 7519

Large intercellular junction GO:0003722 17893 7670
dataset cytochrome GO:0003314 16226 6955

collagen GO:0003403 14579 6250
synapsis GO:0005240 15113 6479
memory GO:0005781 15085 6466
tumor antigen GO:0005995 16871 7232
drug resistance GO:0007018 15620 6696
cell differentiation GO:0000885 16354 7011

locomotion GO:0012740 7303 3132
wound healing GO:0001321 6995 2999

Medium endocytosis GO:0004992 8043 3449
dataset nucleotide-excision repair GO:0000635 8212 3521

DNA replication GO:0000660 8534 3659
sex chromosome GO:0000748 7106 3047
synaptic transmission GO:0000894 7684 3295
ciliary or flagellar motility GO:0000944 7229 3100
menstrual cycle GO:0000949 7465 3210
peptide cross-linking via an oxa-
zole or thiazole

GO:0009882 7627 3261

glial fibrillary acidic protein GO:0013861 913 393
proliferating cell nuclear antigen GO:0001690 917 395

Small nuclear membrane GO:0003460 914 393
dataset intermediate filament GO:0003464 854 368

endosome GO:0003596 942 405
fermentation GO:0003973 844 363
phosphorylation GO:0003982 847 365
spectrin GO:0005892 834 359
oogenesis GO:0007709 910 391
acrosome GO:0001137 824 354

are minimal. At classification time, a new example can be also classified in
linear time both to the number of features and to the number of classes. NB is
particularly well suited when the dimensionality of the inputs is high and can
often outperform more sophisticated classification methods due to its simplicity

Automated Linking Using SVM 263

and effectiveness (Liu et al., 1998).
Support Vector Machine (SVM) is an important classification method for

a binary classification problem (Joachims, 2001). SVM maps a given set of n
dimensional input vectors nonlinearly into a high dimensional feature space and
separate the two classes of data with a maximum margin of hyperplane.

For the multi-class classification problem, a binary SVM is generated for each
class ci in general. Each SVM is trained for each binary classification problem.
Given a new document d to be classified, each SVM estimates P (ci|d). The
document is classified into the class ci for which the corresponding P (ci|d) is
highest. This reduction of a multi-class problem into m binary tasks is called a
one-versus-all method (Joachims, 2001).

3. Results and Discussion

In this Section, we report our experimental results on the performance of Sup-
port Vector Machine (SVM). Experiments were performed on a 2.8GHz Pentium
IV PC with 1GB of memory in Linux environment. Algorithms were coded with
GNU C/C++. For SVM, we chose a linear SVM due to its popularity and fast
training time compared to non-linear SVMs (e.g. polynomial, radial basis func-
tion, or sigmoid SVMs) in text classification (Joachims, 2001). It is important to
select a good value of C, the amount of training error tolerated by the SVM, for
the linear SVM. Among the possible values of C ∈ {0.05, 0.1, 0.5, 1.0, 5, 10, 1000},
we chose C = 5, since the linear SVM with C = 5 performed best on our datasets
in terms of classification accuracy. We used the SVM multiclass 5 package by
Joachims, which is an implementation of the multi-class SVM In this experiment
we constructed three kinds of datasets (small, medium, and large datasets) to
evaluate the performance of SVM algorithm.

Table 2: Number of citations with N classes

Dataset #Citations with N classes Total citations

1 2 3 4

Small Training 8,741 29 0 0 8,799
Training 74,988 605 0 0 76,198
Test 31,961 356 0 0 32,673

Large Training 129,364 14,780 418 6 160,202
Test 55,634 6,234 188 2 68,674

5http://svmlight.joachims.org/

264 Su-Shing Chen and Hyunki Kim

We used the holdout method to randomly divide each dataset into two parts:
a training set and a test set. Table 1 lists the detailed information on the data sets
used in this experiment and each data set contains 10 classes. After stemming and
stop word removal, we obtained a vocabulary of 47,436 unique words for small
dataset, a vocabulary of 217,872 distinct words for medium dataset, a vocabulary
of 357,953 unique words for large dataset, respectively.

We investigated how many documents are contained in multiple relevant
classes in our datasets. Table 2 lists the number of citations in each dataset
and the number of documents with N classes (1 ≤ N ≤ 4).

To construct training and test data, we first surveyed how many GO terms are
contained in PUBMED citations. For each GO term, we made a query statement,
limiting the results to the Medical Subject Heading (MeSH) major topic field
and to citations with abstracts in English (National Library of Medicine). After
submitting all query statements to PUBMED, we found that a total number of
564 out of 17,593 GO terms found in PUBMED citations. Table 3 lists the top
10 most frequently occurring GO terms in PUBMED.

Table 3: Top 10 GO terms

GO ID GO Term #Citations

GO:0001469 protein 1,383,991
GO:0000417 cell 762,860
GO:0004433 peptide or protein amino-terminal blocking 681,065
GO:0004443 peptide or protein carboxyl-terminal blocking 681,065
GO:0005741 physiological process 239,942
GO:0003091 plasma protein 201,665
GO:0003382 nucleic acid 198,735
GO:0001124 behavior 193,769
GO:0004886 cell growth and/or maintenance 162,424
GO:0003067 peptide hormone 154,067

For evaluating the performance, we use the standard recall, precision, and
F1 measure. Recall (r) is defined to be the ratio of correct predictions by the
classification system divided by the total number of correct predictions. Precision
(p) is the ratio of correct predictions by the classification system divided by the
total number of the system’s predictions. The F1 measure combines recall and
precision into an equally weighted single measure as follows:

F1(r, p) =
2rp

r + p

Automated Linking Using SVM 265

As a feature selection method, mutual information (or information gain) (Cover
and Thomas, 1991) was used to select a total of 200, 600, and 1000 features
that have the highest average mutual information with the class variable for each
dataset.

Table 4 summarized the performance scores, precision (p), recall (r), and F1

measures on three datasets for vocabulary sizes of 200, 600, and 1000 words.
Compared to NB, SVM performs extremely well, except training times of clas-
sifiers (time: CPU seconds) (Table 5). We have carried out the long-waiting
training times of 29190, 32071, 50065 CPU seconds. Despite this problem, SVM
can be scaled up using grid computers of size 200 and above which are commonly
operating in large research labs. Although PUBMED has about 2,000 new entries
everyday, we will not retrain the whole data collection.

Table 4: Performance summary of SVM

#Words

Dataset 200 600 1000

p r F1 p r F1 p r F1

Small NB 89.27 89.51 89.39 91.75 91.90 91.83 91.70 91.83 91.77
SVM 93.65 93.78 93.71 94.08 94.22 94.15 94.03 94.16 94.09

Medium NB 80.83 81.24 81.03 85.52 86.16 85.54 87.28 87.97 87.76
SVM 89.84 90.15 89.99 91.39 91.62 91.51 91.63 91.86 91.74

Large NB 71.75 73.16 72.45 76.58 78.40 77.48 78.37 79.80 79.08
SVM 81.73 81.74 81.74 83.62 83.70 83.66 83.90 83.97 83.93

Table 5: Train and test times of classifiers (time: CPU seconds)

Dataset #Words: 200 #Words: 600 #Words: 1000

Train Test Train Test Train Test

Small NB 0.11 0.49 0.22 0.94 0.28 1.26
SVM 29.01 0.02 33.16 0.04 35.90 0.03

Medium NB 0.85 3.57 1.66 6.97 2.13 9.02
SVM 4818.69 0.16 5115.62 0.28 5571.04 0.32

Large NB 1.69 7.18 3.35 14.53 4.40 19.35
SVM 29190.06 0.47 32071.2 0.55 50065.7 0.69

266 Su-Shing Chen and Hyunki Kim

Table 5 shows the time to train and classify the NB and SVM algorithms for
each dataset. The training time of linear SVM tends to increase dramatically
with an increasing training set size and feature set size, although a linear SVM
can be trained much faster than a nonlinear SVM (Joachims, 2001).

The results were executed on a 2.8GHz Pentium IV PC with 1GB of memory
in Linux environment. If we scale up the environment to high performance com-
puting (e.g., 200+ CPU’s), we feel that SVM is a viable algorithm to implement
the automated linking of PUBMED documents with GO terms. The reason that
linear SVM is viable for parallelization is that the two mathematical operations
of SVM can be parallelized:

A linear mapping of an input vector into a high dimensional feature space that
is hidden from the input and output.

Construction of an optimal hyper-plane from features discovered in Step 1.

This hyper-plane is a decision surface that is constructed that separates mem-
bers of different classes in such a way as to maximize the distance between them.
The finding of hyper-plane is a convex optimization problem. The simplest so-
lution is the gradient ascent approach that follows the steepest ascent path to
the optimal solution. A more efficient way is to use the chunking decomposition
algorithms. The basic idea of parallelism is derived from these two algorithms,
which distribute the dataset to different processors and then aggregating results
until convergence. The convergence criterion is the Karush-Kuhn-Tucker condi-
tions. It is easy to develop that the parallel algorithm will always converge for
distributed data sets.

References

Chakrabarti, S. (2000). Data mining for hypertext: A tutorial survey. ACM SIGKDD
Explorations 1, 1-11.

Cover, T. and Thomas, J. (1991). Elements of Information Theory. Wiley.

Hearst, M. A. (1999). The Use of Categories and Clusters for Organizing Retrieval
Results. In Natural Language Information Retrieval (Edited by T. Strzalkowski),
333-374. Dordrecht, Kluwer Academic Publishers.

Joachims, T. (2001). Learning to Classify Text using Support Vector Machines. Kluwer
Academic.

Kohonen, T. (1998). Self-organization of very large document collection: state of the
art. Proceedings of ICANN98, the 8-th International Conference on Artificial Neu-
ral Networks, Skovde, Sweden.

Automated Linking Using SVM 267

Lewis, D. D. (1998). Naive (Bayes) at Forty: The Independence Assumption in Infor-
mation Retrieval. Proceedings of 10th European Conference on Machine Learning
(ECML), 4-15. Chemnitz, Germany.

McCray, A. T., Browne, A. C., and Bodenreider, O. (2002). The lexical properties of
the gene ontology (GO). Proceeding of AMIA Annual Symposium, 504-508.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Raychaudhuri, S., Chang, J. T., Sutphin, P. D., and Altman R. B. (2002). Associating
genes with gene ontology codes using a maximum entropy analysis of biomedical
literature. Genome Research 12, 203-214.

Smith, T. C. and Cleary, J. G. (2003). Automatically linking MEDLINE abstracts to
the gene ontology. Proceedings of the ISMB 2003 BioLINK Text Data Mining,
Brisbane, Australia.

Smith, B., Williams J., and Schulze-Kremer, S. (2003). The ontology of the gene ontol-
ogy. Proceedings of the Annual Symposium of the American Medical Informatics
Association, 609-613.

Yandell, M. D. and Majoros, W. H. (2002). Genomics and natural language processing.
Nature Reviews Genetics 3, 601-610.

Received December 13, 2005; accepted February 9, 2005.

Su-Shing Chen
Computer and Information Science
and Engineering Department
University of Florida, Gainesville
Florida 32611, USA
suchen@cise.ufl.edu

Hyunki Kim
Computer and Information Science
and Engineering Department
University of Florida, Gainesville
Florida 32611, USA
hkk@etri.re.kr

