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Abstract: In recent years Singular Spectrum Analysis (SSA), used as a
powerful technique in time series analysis, has been developed and applied
to many practical problems. In this paper, the performance of the SSA tech-
nique has been considered by applying it to a well-known time series data
set, namely, monthly accidental deaths in the USA. The results are com-
pared with those obtained using Box-Jenkins SARIMA models, the ARAR
algorithm and the Holt-Winter algorithm (as described in Brockwell and
Davis (2002)). The results show that the SSA technique gives a much more
accurate forecast than the other methods indicated above.
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1. Introduction

The Singular Spectrum Analysis (SSA) technique is a novel and powerful
technique of time series analysis incorporating the elements of classical time series
analysis, multivariate statistics, multivariate geometry, dynamical systems and
signal processing.

The possible application areas of SSA are diverse: from mathematics and
physics to economics and financial mathematics, from meterology and oceanology
to social science and market research. Any seemingly complex series with a
potential structure could provide another example of a successful application of
SSA (Golyandina et al., 2001).

The aim of SSA is to make a decomposition of the original series into the sum
of a small number of independent and interpretable components such as a slowly
varying trend, oscillatory components and a structureless noise.

SSA is a very useful tool which can be used for solving the following problems:
1) finding trends of different resolution; 2) smoothing; 3) extraction of seasonality
components; 4) simultaneous extraction of cycles with small and large periods;
5) extraction of periodicities with varying amplitudes; 6) simultaneous extraction
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of complex trends and periodicities; 7) finding structure in short time series; and
8) change-point detection.

Solving all these problems corresponds to the basic capabilities of SSA. To
achieve the above mentioned capabilities of SSA, we do not need to know the
parametric model of the considered time series.

The birth of SSA is usually associated with the publication of papers by
Broomhead (e.g. Broomhead and King, 1986) while the ideas of SSA were inde-
pendently developed in Russia (St. Petersburg, Moscow) and in several groups in
the UK and USA. At present, the papers dealing with the methodological aspects
and the applications of SSA number several hundred (see, for example, Vautard
et al., 1992; Ghil and Taricco, 1997; Allen and Smith, 1986; Danilov, 1997; Yiou
et al., 2000 and references therein). A thorough description of the theoretical and
practical foundations of the SSA technique (with several examples) can be found
in Danilov and Zhigljavsky (1997) and Golyandina et al. (2001). An elementary
introduction to the subject can be found in Elsner and Tsonis (1996).

The fact that the original time series must satisfy a linear recurrent formula
(LRFs) is an important property of the SSA decomposition. Generally, the SSA
method should be applied to time series governed by linear recurrent formulae to
forecast the new data points. There are two methods to build confidence intervals
based on the SSA technique : the empirical method and the bootstrap method.
The empirical confidence intervals are constructed for the entire series, which is
assumed to have the same structure in the future. Bootstrap confidence intervals
are built for the continuation of the signal which are the main components of the
entire series (Golyandina et al., 2001).

Real time series often contain missing data, which prevent analysis and re-
duces the precision of the results. There are different SSA-based methods for
filling in missing data sets (see, for example, Schoellhamer, 2001; Kondrashov et
al., 2005; Golyandina and Osipov, 2006; Kondrashov, 2006).

Change point detection in time series is a method that will find if the struc-
ture of the series has changed at some time point by some cause. The method
of change-point detection described in Moskvina and Zhigljavsky (2003) is based
on the sequential application of SSA to subseries of the original series and moni-
tors the quality of the approximation of the other parts of the series by suitable
approximates. Also, it must be mentioned that the automatic methods of iden-
tification main components of the time series within the SSA framework have
been recently developed (see, for example, Alexandrov and Golyandina, 2004a;
Alexandrov and Golyandina, 2004b).

In this paper we start with a brief description of the methodology of SSA
and finish by appliying this technique to the original series, namely, the monthly
accidental deaths in the USA (Death series) and comparing the SSA technique
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with several other methods for forecasting results.

2. Methodology

Consider the real-valued nonzero time series YT = (y1, . . . , yT ) of sufficient
length T . The main purpose of SSA is to decompose the original series into a
sum of series, so that each component in this sum can be identified as either a
trend, periodic or quasi-periodic component (perhaps, amplitude-modulated), or
noise. This is followed by a reconstruction the original series.

The SSA technique consist of two complementary stages: decomposition and
reconstruction and both of which include two separate steps. At the first stage
we decompose the series and at the second stage we reconstruct the original
series and use the reconstructed series (which is without noise) for forecasting
new data points. Below we provide a brief discussion on the methodology of the
SSA technique. In doing so, we mainly follow Golyandina et al. (2001, chap. 1
and 2).

2.1 Stage 1: Decomposition

First step: Embedding

Embedding can be regarded as a mapping that transfers a one-dimensional
time series YT = (y1, . . . , yT ) into the multi-dimensional series X1, . . . ,XK with
vectors Xi = (yi, . . . , yi+L−1)

′ ∈ RL, where K = T − L +1. Vectors Xi are
called L-lagged vectors (or, simply, lagged vectors). The single parameter of the
embedding is the window length L, an integer such that 2 ≤ L ≤ T . The result
of this step is the trajectory matrix X = [X1, . . . ,XK ] = (xij)

L,K
i,j=1.

Note that the trajectory matrix X is a Hankel matrix, which means that all
the elements along the diagonal i+j = const are equal. Embedding is a standard
procedure in time series analysis. With the embedding performed, future analysis
depends on the aim of the investigation.

Second step: Singular value decomposition (SVD)

The second step, the SVD step, makes the singular value decomposition of
the trajectory matrix and represents it as a sum of rank-one bi-orthogonal el-
ementary matrices. Denote by λ1, . . . , λL the eigenvalues of XX

′
in decreasing

order of magnitude (λ1 ≥ . . . λL ≥ 0) and by U1, . . . , UL the orthonormal system
(that is, (Ui, Uj)=0 for i �= j (the orthogonality property) and ‖Ui‖=1 (the unit
norm property)) of the eigenvectors of the matrix XX

′
corresponding to these

eigenvalues. (Ui, Uj) is the inner product of the vectors Ui and Uj and ‖Ui‖ is
the norm of the vector Ui. Set

d = max(i, such that λi > 0) = rank X.
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If we denote Vi = X
′
Ui/

√
λi, then the SVD of the trajectory matrix can be

written as:
X = X1 + · · · + Xd, (2.1)

where Xi =
√

λiUiVi
′
(i = 1, . . . , d). The matrices Xi have rank 1; therefore they

are elementary matrices, Ui (in SSA literature they are called ‘factor empirical or-
thogonal functions’ or simply EOFs) and Vi (often called ‘principal components’)
stand for the left and right eigenvectors of the trajectory matrix. The collection
(
√

λi, Ui, Vi) is called the i-th eigentriple of the matrix X,
√

λi (i = 1, . . . , d) are
the singular values of the matrix X and the set {√λi} is called the spectrum of
the matrix X. If all the eigenvalues have multiplicity one, then the expansion
(2.1) is uniquely defined.

SVD (2.1) is optimal in the sense that among all the matrices X(r) of rank
r < d, the matrix

∑r
i=1 Xi provides the best approximation to the trajectory

matrix X, so that ‖ X − X(r) ‖ is minimum. Note that ‖ X ‖2 =
∑d

i=1 λi

and ‖ Xi ‖2 = λi for i = 1, . . . , d. Thus, we can consider the ratio λi/
∑d

i=1 λi

as the characteristic of the contribution of the matrix Xi to expansion (2.1).
Consequently,

∑r
i=1 λi/

∑d
i=1 λi, the sum of the first r ratios, is the characteristic

of the optimal approximation of the trajectory matrix by the matrices of rank r .

2.2 Stage 2: Reconstruction

First step: Grouping

The grouping step corresponds to splitting the elementary matrices Xi into
several groups and summing the matrices within each group. Let I = {i1, . . . , ip}
be a group of indices i1, . . . , ip. Then the matrix XI corresponding to the group
I is defined as XI = Xi1 + · · · + Xip . The spilt of the set of indices J = 1, . . . , d
into the disjoint subsets I1, . . . , Im corresponds to the representation

X = XI1 + · · · + XIm. (2.2)

The procedure of choosing the sets I1, . . . , Im is called the eigentriple grouping.
For given group I the contribution of the component XI into the expansion (1)
is measured by the share of the corresponding eigenvalues:

∑
i∈I λi/

∑d
i=1 λi.

Second step: Diagonal averaging

Diagonal averaging transfers each matrix I into a time series, which is an
additive component of the initial series YT . If zij stands for an element of a
matrix Z, then the k -th term of the resulting series is obtained by averaging zij

over all i, j such that i + j = k + 2. This procedure is called diagonal averaging,
or Hankelization of the matrix Z. The result of the Hankelization of a matrix
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Figure 1: Death series: Monthly accidental deaths in the USA
(1973–1978).

Z is the Hankel matrix HZ, which is the trajectory matrix corresponding to the
series obtained as a result of the diagonal averaging. Note that the Hankelization
is an optimal procedure in the sense that the matrix HZ is the nearest to Z (with
respect to the matrix norm) among all Hankel matrices of the corresponding size
(for more information see Golyandina et al. (2001, chap. 6, sec. 2)). In its turn,
the Hankel matrix HZ uniquely defines the series by relating the value in the
diagonals to the values in the series. By applying the Hankelization procedure to
all matrix components of (2.2), we obtain another expansion:

X = X̃I1 + . . . + X̃Im (2.3)

where X̃I1 = HX. This is equivalent to the decomposition of the initial series
YT = (y1, . . . , yT ) into a sum of m series:

yt =
m∑

k=1

ỹ
(k)
t (2.4)

where Ỹ
(k)
T = (ỹ(k)

1 , . . . , ỹ
(k)
T ) corresponds to the matrix XIk

.
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3. Application

3.1 Death series

The Death series shows the monthly accidental deaths in the USA between
1973 and 1978. This data have been used by many authors (see, for example,
Brockwell and Davis, 2002) and can be found in many time series data libraries.
We apply the SSA technique to this data set to illustrate the capability of the
SSA technique to extract trend, oscillation, noise and forecasting. All of the
results and figures in the following application are obtained by means of the
Caterpillar-SSA 3.30 software 1. Figure 1 shows the Death series over period
1973 to 1978.

Figure 2: Principal components related to the first 12 eigentriples.

3.2 Decomposition: Window length and SVD

As we mentioned earlier, the window length L is the only parameter in the
decomposition stage. Selection of the proper window length depends on the prob-
lem in hand and on preliminarily information about the time series. Theoretical
results tell us that L should be large enough but not greater than T/2. Further-
more, if we know that the time series may have a periodic component with an
integer period (for example, if this component is a seasonal component), then
to get better separability of this periodic component it is advisable to take the
window length proportional to that period. Using these recommendations, we

1www.gistatgroup.com
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take L = 24. So, based on this window length and on the SVD of the trajectory
matrix (24 × 24), we have 24 eigentriples, ordered by their contribution (share)
in the decomposition.

Note that the rows and columns of the trajectory matrix X are subseries of the
original time series. Therefore, the left eigenvectors Ui and principal components
Vi (right eigenvectors) also have a temporal structure and hence can also be
regarded as time series. Let us consider the result of the SVD step. Figure 2
represents the principal components related to the first 12 eigentriples.

3.3 Supplementary information

Let us describe some information, which proves to be very helpful in the
identification of the eigentriples of the SVD of the trajectory matrix of the original
series. Supplementary information help us to make the proper groups to extract
the trend, harmonic components and noise. So, supplementary information can
be considered as a bridge between the decomposition and reconstruction step:

Decomposition �−→ Supplementary information �−→ Reconstruction

Below, we briefly explain some methods, which are useful in the separation of the
signal component from noise.

Auxiliary Information

The availability of auxiliary information in many practical situations increase
the ability to build the proper model. Certainly, auxiliary information about
the initial series always makes the situation clearer and helps in choosing the
parameters of the models. Not only can this information help us to select the
proper group, but it is also useful for forecasting and the change point detection
based on the SSA technique. For example, the assumption that there is an
annual periodicity in the Death series suggests that we must pay attention to the
frequency k/12 (k = 1, ..., 12). Obviously we can use the auxiliary information
to select the proper window length as well.

Singular values

Usually every harmonic component with a different frequency produces two
eigentriples with close singular values (except for frequency 0.5 which provides
one eigentriples with saw-tooth singular vector). It will be clearer if N, L and K
are sufficiently large.

Another useful insight is provided by checking breaks in the eigenvalue spec-
tra. As a rule, a pure noise series produces a slowly decreasing sequence of
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singular values.
Therefore, explicit plateaux in the eigenvalue spectra prompts the ordinal

numbers of the paired eigentriples. Figure 3 depicts the plot of the logarithms of
the 24 singular values for the Death series.

Figure 3: Logarithms of the 24 eigenvalues.

Five evident pairs with almost equal leading singular values, correspond to
five (almost) harmonic components of the Death series: eigentriple pairs 2-3 ,
4-5, 7-8, 9-10 and 11-12 are related to harmonics with specific periods (we show
later that they correspond to periods 12, 6, 2.5, 4 and 3).

Pairwise scatterplots

In practice, the singular values of the two eigentriples of a harmonic series are
often very close to each other, and this fact simplifies the visual identification of
the harmonic components. An analysis of the pairwise scatterplots of the singular
vectors allows one to visually identify those eigentriples that corresponds to the
harmonic components of the series, provided these components are separable from
the residual component.

Consider a pure harmonic with a frequency w, certain phase, amplitude and
ideal situation where P = 1/w is a divisor of the window length L and K. Since
P is an integer, it is a period of the harmonic. In the ideal situation, the left
eigenvectors and principal components have the form of sine and cosine sequences
with the same P and the same phase. Thus, the identification of the components
that are generated by a harmonic is reduced to the determination of these pairs.

The pure sine and cosine with equal frequencies, amplitudes, and phases create
the scatterplot with the points lying on a circle. If P = 1/w is an integer, then
this points are the vertices of the regular P -vertex polygon. For the rational
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frequency w = m/n < 0.5 with relatively prime integer m and n, the points are
the vertices of the scatterplots of the regular n-vertex polygon. Figure 4 depicts
scatterplots of the 6 pairs of sine/cose sequence (without noise) with zero phase,
the same amplitude and periods 12, 6, 4, 3, 2.5 and 2.4.

Figure 4: Scatterplots of the 6 pairs of sines/cosines.

Figure 5 depicts scatterplots of the paired eigenvectors in the Death series,
corresponding to the harmonics with periods 12, 6, 4, 3 and 2.5. They are ordered
by their contribution (share) in the SVD step.

Figure 5: Scatterplots of the paired harmonic eigenvectors.

Figure 6: periodograms of the paired eigentriples (2–3, 4–5, 7–8, 9–10, 11–12).

Periodogram analysis

The periodogram analysis of the original series and eigenvectors may help
us a lot in making the proper grouping; it tells us which frequency must be
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considered. We must then look for the eigentriples whose frequencies coincide
with the frequencies of the original series.

If the periodograms of the eigenvector have sharp spark around some frequen-
cies, then the corresponding eigentriples must be regarded as those related to the
signal component.

Figure 6 depicts the periodogram of the paired eigentriples (2–3, 4–5, 7–8,
9–10, 11–12). The information arising from Figure 6 confirms that the above
mentioned eigentriples correspond to the periods 12, 6, 2.5, 4 and 3 which must
be regarded as selected eigentriples in the grouping step with another eigentriple
we need to reconstruct the series.

Separability

The main concept in studying SSA properties is ‘separability’, which char-
acterizes how well different components can be separated from each other. SSA
decomposition of the series YT can only be successful if the resulting additive
components of the series are approximately separable from each other. The fol-
lowing quantity (called the weighted correlation or w-correlation) is a natural
measure of dependence between two series Y

(1)
T and Y

(2)
T :

ρ
(w)
12 =

(
Y

(1)
T , Y

(2)
T

)
w

‖ Y
(1)
T ‖w‖ Y

(2)
T ‖w

where ‖ Y
(i)
T ‖w =

√(
Y

(i)
T , Y

(i)
T

)
w

,
(
Y

(i)
T , Y

(j)
T

)
w

=
∑T

k=1 wky
(i)
k y

(j)
k , (i, j =

1, 2), wk=min{k, L, T − k} (here we assume L ≤ T/2).
A natural hint for grouping is the matrix of the absolute values of the w -

correlations, corresponding to the full decomposition (in this decomposition each
group corresponds to only one matrix component of the SVD). If the absolute
value of the w -correlations is small, then the corresponding series are almost w -
orthogonal, but, if it is large, then the two series are far from being w -orthogonal
and are therefore badly separable. So, if two reconstructed components have zero
w -correlation it means that these two components are separable. Large values
of w -correlations between reconstructed components indicate that the compo-
nents should possibly be gathered into one group and correspond to the same
component in SSA decomposition.

Figure 7 shows the w -correlations for the 24 reconstructed components in a
20-grade grey scale from white to black corresponding to the absolute values of
correlations from 0 to 1.
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Figure 7: Matrix of w -correlations for the 24 reconstructed components.

3.4 Reconstruction: Grouping and diagonal averaging

Reconstruction is the second stage of the SSA technique. As mentioned above,
this stage includes two separate steps: grouping (identifying signal component
and noise) and diagonal averaging (using grouped eigentriples to reconstruct the
new series without noise). Usually, the leading eigentriple describes the general
tendency of the series. Since in most cases the eigentriples with small shares are
related to the noise component of the series, we need to identify the set of leading
eigentriples.

Grouping: Trend, harmonics and noise

Trend identification:

Trend is the slowly varying component of a time series which does not contain
oscillatory components. Assume that the time series itself is such a component
alone. Practice shows that in this case, one or more of the leading eigenvectors will
be slowly varying as well. We know that eigenvectors have (in general) the same
form as the corresponding components of the initial time series. Thus we should
find slowly varying eigenvectors. It can be done by considering one-dimensional
plots of the eigenvectors (see, Figure 2).

In our case, the leading eigenvector is definitely of the required form. Figure
8 shows the extracted trend on the background of the original series which is
obtained from the first eigentriple. Note that we can build a more complicated
approximation of the trend if we use some other eigentriples. However, the pre-
cision we would gain will be very small and the model of the trend will become
much more complicated.
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Figure 9 shows the extracted trend which is obtained from the first and sixth
eigentriples. It appears that taking the first and sixth eigentriples show the gen-
eral tendency of the Death series better than the first eigentriple alone. However,
the sixth eigentriple does not completely belong to the trend component but we
can consider it as a mixture of the trend and the harmonic component.

Figure 8: Trend extraction (first eigentriple).

Figure 9: Trend extraction (first and sixth eigentriples).

Harmonic identification:

The general problem here is the identification and separation of the oscillatory
components of the series that do not constitute parts of the trend. The statement
of the problem in SSA is specified mostly by the model-free nature of the method.

The choice L = 24 allows us to simultaneously extract all the seasonal com-
ponents (12, 6, 4, 3, and 2.5 month) as well as the trend. Figure 10 shows the
oscillation of our series which is obtained by the eigentriples 2-12.

By comparing Figure 10 to Figure 1 it is clear that the eigentriples selected to
identify the harmonic components have been done so correctly. Figure 11 shows
the oscillation of our series obtained by the eigentriples 2–5 and 7–12. In this
case we consider the sixth eigentriple as a trend component. It seems that there
is no big discrepancy between selecting the sixth eigentriple into the trend or
oscillation components as it appears from the Figures 10 and 11.
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Figure 10: Oscillation extraction(eigentriples 2–12).

Figure 11: Oscillation extraction(eigentriples 2–5,7–12).

Noise detection:

The problem of finding a refined structure of a series by SSA is equivalent
to the identification of the eigentriples of the SVD of the trajectory matrix of
this series, which correspond to trend, various oscillatory components, and noise.
From the practical point of view, a natural way of noise extraction is the group-
ing of the eigentriples, which do not seemingly contain elements of trend and
oscillations. Let us discuss the eigentriple 13. We consider it as an eigentriple
which belongs to noise because the period of the component reconstructed by
eigentriple 13 is a mixture of the periods 3, 10, 14 and 24, as the periodogram
indicates this cannot be interpreted in the context of seasonality for this series.
We will thus classify eigentriple 13 as a part of the noise. Figure 12 shows the
residuals which are obtained by the eigentriples 13–24.

Figure 12: Residual series (eigentriples 13–24).
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Diagonal averaging

The last step of the SSA technique is diagonal averaging. Diagonal averaging
applied to a resultant matrix XIk

(which is obtained from the grouping step for
the k–th group of m) produces the Ỹ k

T = (ỹk
1 , . . . , ỹk

T ) and therefore the initial
series YT = (y1, . . . , yT ) is decomposed into the sum of m series yt =

∑m
k=1 ỹk

t

(1 ≤ t ≤ T ).
If we just consider the trend (eigentriple 1 or (1 and 6)), harmonic component

(eigentriple 2–12 or (2–5, 7–12)) and noise (eigentriple 13–24) as groups then we
have 3 groups (m = 3). However we can have 8 groups if we consider each
group by detail such as; eigentriples 1, 2–3, 4–5, 6, 7–8, 9-10, 11–12 (which
correspond to the signal) and 13–24 or 7 groups if we merge the eigentriples
1 and 6 into a group. Figure 13 shows the result of the signal extraction or
reconstruction series without noise which is obtained from the eigentriples 1–12.
The dotted and the solid line correspond to the reconstructed series and the
original series respectively. As indicated on this figure, the considered groups for
the reconstruction of the original series is optimal (bear in mind that the SVD
step has optimal properties). If we add the series of Figures 8 and 9 (or 9 and
11) we will obtain the refined series (Figure 13).

Figure 13: Reconstructed series (eigentriples 1–12).

3.5 Forecasting

Forecasting by SSA can be applied to time series that approximately satisfy
linear recurrent formulae (LRF).

We shall say that the series YT satisfies an LRF of order d if there are numbers
a1, . . . , ad such that

yi+d =
d∑

k=1

akyi+d−k, 1 ≤ i ≤ T − d.

The class of series governed by linear recurrent formulae (LRFs) is rather
wide; it contains harmonics, polynomial and exponential series and is closed un-
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der term-by-term addition and multiplication. LRFs are also important for prac-
tical implication. To find the coefficients a1, . . . , ad we can use the eigenvectors
obtained from the SVD step or characteristic polynomial (for more information
see Golyandina et al. (2001, chap. 2 and 5)).

Assume that we have a series YT = Y
(1)
T +Y

(2)
T and the problem of forecasting

its component Y
(1)
T . If Y

(2)
T can be regarded as noise, then the problem is that of

forecasting the signal Y
(1)
T in the presence of a noise Y

(2)
T . The main assumptions

are:
(a) the series Y

(1)
T admits a recurrent continuation with the help of an LRF of a

relatively small dimension d, and
(b) there exists a number L such that the series Y

(1)
T and Y

(2)
T are approximately

separable for the window length L.
Figure 14 shows the original series (solid line), reconstructed series (dotted

line) and its forecasting after 1978 (the six data points of 1979). The vertical
dotted line shows the truncation between the last point of the original series
and the forecast starting point. Figure 14 shows that the reconstructed series
(which is obtained from eigentriples 1-12) and the original series are close together
indicating that the forecasted values are reasonably accurate.

Figure 14: Original series (solid line), reconstructed series (dotted
line) and the 6 forecasted data points of 1979.

4. Comparison

In this section we compare the SSA technique with several well-known meth-
ods namely, the traditional Box-Jenkins SARIMA models, the ARAR Algorithm
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and the Seasonal Holt-Winters Algorithm. Brockwell and Davis (2002) applied
these methods on the Death series to forecast the six future data points. Be-
low, these methods are described shortly and the results of their forecasting are
compared with the SSA technique.

SARIMA model

Box and Jenkins (1970) provide a methodology for fitting a model to an
empirical series. This systematic approach identifies a class of models appropriate
for the empirical data sequence at hand and estimates its parameters. A general
class of Box and Jenkins models includes ARIMA and SARIMA models that can
model a large class of autocorrelation functions. We use the models below for
forecasting the six future data as are described in Brockwell and Davis (2002):
Model I:

∇12yt = 28.831 + (1 − 0.478B)(1 − 0.588B12)Zt ;

Model II:

∇12yt = 28.831 + Zt − 0.596Zt−1 − 0.407Zt−6 − 0.685Zt−12 + 0.460Zt−13,

where Zt ∼ WN(0, 94390) and the backward shift operator B is: BjZt = Zt−j .

ARAR algorithm

The ARAR algorithm is an adaption of ARARMA algorithm (Newton and
Parzen, 1984) in which the idea is to apply automatically selected ‘memory-
shortening’ transformations (if necessary) to the data and then to fit an ARMA
model to the transformed series. The ARAR algorithm used here is a version of
this in which the ARMA fitting step is replaced by the fitting of the subset AR
model to the transformed data.

Holt-Winter eeasonal algorithm (HWS)

The Holt-Winter (HW) algorithm uses a set of simple recursions that general-
ize the exponential smoothing recursions to generate forecasts of series containing
a locally linear trend. The Holt-Winter seasonal algorithm (HWS) extends the
HW algorithm to handle data in which there are both trend and seasonal variation
of known period.
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Results

Table 1 shows the results for several methods for the forecasting of the six
future data points. To calculate the precision we have used two measures, namely,
the Mean Absolute Error (MAE) and the Mean Relative Absolute Error (MRAE).

This table shows that the forecasted values are very close to the original
data for the SSA technique. We borrow the result of forecasting for the other
methods from Brockwell and Davis (2002, chap. 9). The methods are arranged
based on the performance of forecasting. The values MAE and MRAE show the
performance of forecasting (the value of the MRAE is rounded). As it appears
in Table 1, the SSA technique is the best among the methods considered, for
example, the value of MAE or MRAE for the SSA methods is 3 times less than
the first one (model I) and 2 times less than the HWS algorithm.

Table 1: Forecast data, MAE and MRAE for six forecasted data by several
methods.

1 2 3 4 5 6 MAE MRAE

Original Data 7798 7406 8363 8460 9217 9316
Model I 8441 7704 8549 8885 9843 10279 524 6 %
Model II 8345 7619 8356 8742 9795 10179 415 5 %
HWS 8039 7077 7750 7941 8824 9329 351 4 %
ARAR 8168 7196 7982 8284 9144 9465 227 3 %
SSA 7782 7428 7804 8081 9302 9333 180 2 %

Note that by using the above mentioned information and the SSA-Caterpillar
software, anyone can repeat the results presented in this paper for each part such
as the results of the forecasting in Table 1.

5. Conclusion

This paper has illustrated that the SSA technique performs well in the si-
multaneous extraction of harmonics and trend components. The comparison of
forecasting results showed that SSA is more accurate than several well-known
methods, in the analysis and future prediction of the Death series. The Death
series is an example of a seemingly complex series with potential structure which
can be easily analysed by SSA and could provide a typical example of a successful
application of SSA.
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