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Abstract: The chi-squared test for independence in two-way categorical
tables depends on the assumptions that the data follow the multinomial
distribution. Thus, we suggest alternatives when the assumptions of multi-
nomial distribution do not hold. First, we consider the Bayes factor which is
used for hypothesis testing in Bayesian statistics. Unfortunately, this has the
problem that it is sensitive to the choice of prior distributions. We note here
that the intrinsic Bayes factor is not appropriate because the prior distribu-
tions under consideration are all proper. Thus, we propose using Bayesian
estimation which is generally not as sensitive to prior specifications as the
Bayes factor. Our approach is to construct a 95% simultaneous credible re-
gion (i.e., a hyper-rectangle) for the interactions. A test that all interactions
are zero is equivalent to a test of independence in two-way categorical tables.
Thus, a 95% simultaneous credible region of the interactions provides a test
of independence by inversion.

Key words: Bayes factor, chi-squared statistic, interactions, intra-class cor-
relation, prior distribution, simultaneous inference.

1. Introduction

There are many occasions when we need to understand the extent of the asso-
ciation of two attributes. For example, the National Center for Health Statistics
has been collecting data on obesity in the U.S. for many years. The data have
been used to establish the relation between obesity and socio-demographic vari-
ables. These data are typically presented in two-way categorical tables. Scientists
routinely use the chi-squared test to analyze such tables. However, in many ap-
plications the chi-squared test can be defective; one example is when there is
an intra-class correlation violating the assumptions in the multinomial distribu-
tion. This paper reviews shortcomings of methods based on adjusted chi-squared
statistic and the Bayes factor, an alternative in Bayesian hypothesis testing to
the chi-squared statistic, and we propose a simple method based on estimation
rather than hypothesis testing to “test” for independence in two-way categorical
tables.



218 Balgobin Nandram and Jai Won Choi

We consider the analysis of data summarized in a r× c categorical table (i.e.,
there are two attributes, the first with r levels and the second with c levels).
The dataset is a sample from a population, and the individuals in the sample are
categorized according to the two attributes. Let πjk denote the probability that
an individual falls in the jth level of the first attribute and kth level of the second
attribute. Here

∑r
j=1

∑c
k=1 πjk = 1. The two attributes are not associated if

πjk = π
(1)
j π

(2)
k , j = 1, . . . , r; k = 1, . . . , c; otherwise they are associated. When a

simple random sample of individuals is taken from the population, the sampled
individuals can be allocated to the cells of the r×c categorical table (multinomial
sampling) to obtain a chi-squared test of association between the two categories
based on the data collected.

Traditionally, there are two ways to test for association (or no association) in
a r × c categorical table. First, we can use the well-known Pearson chi-squared
statistic which works for simple random sampling (i.e., multinomial sampling).
The second approach is to use the Bayes factor (Kass and Raftery 1995), an alter-
native to the chi-squared test. In multinomial sampling the individuals fall in the
cells independently, and in this case the standard chi-squared test for association
between the two categories of r × c table is correct asymptotically. There is a
correlation because the sample size is fixed. However, if the counts in the cells are
formed from members in a cluster, the assumptions of multinomial sampling (i.e.,
independence) no longer hold because there is an additional correlation among
the members in the cluster (i.e., the intra-class correlation).

Thus, the standard chi-squared test is inappropriate, especially for borderline
cases of significance, when there is an intra-class correlation. For members within
the same cluster (e.g., children in the same family, rats in the same litter, students
in the same class), one can expect a positive correlation among the members of
the cluster because the members will tend to have similar trait or share the same
effect. This is the intra-class correlation (i.e., correlation among the members
inside the cluster). For data with an intra-class correlation, the information
available from all the members within the cluster is effectively less than the
information when there is independence among the members within the cluster.
Thus, with an intra-class correlation the effective sample size is smaller than the
cluster size, so that there is an increase in variability when there is an intra-
class correlation. For a simple nonparametric method to calculate the intra-class
correlation see Rao (1965, p. 159).

Several authors have recognized inaccuracy in the analysis when the usual
chi-squared test is applied to correlated data; efforts to correct for spurious in-
flation in such test statistics have been based mainly on two approaches. The
design-based approach provides inference with respect to the asymptotic sam-
pling distribution of estimates over repetitions of the sample design (Fellegi 1980,
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Holt, Scott and Ewings 1980, Rao and Scott 1981, 1984, Bedrick 1983, and Fay
1985). They use design effect which is the ratio of two variances of an appropriate
estimator, one from a more complex design than simple random sampling and the
other from simple random sampling. For example, Rao and Scott (1981, 1984) in-
vestigate the effects of stratification and clustering on the asymptotic distribution
of Pearson’s chi-squared statistic for goodness of fit and independence in multi-
way categorical tables. They propose generalized design effects which are used to
adjust the standard chi-squared statistic. The model-based approach postulates
a probability distribution to model the sample data (Altham 1976, Cohen 1976,
Brier 1980, Fienberg 1979, and Choi and McHugh 1989). For example, Choi and
McHugh (1989), applying the probabilistic development in Altham (1976) and
Cohen (1976), shows how to adjust the standard chi-squared test statistic when
there is an intra-class correlation. In the Bayesian approach these adjustments
are not necessary because appropriate Bayesian models can be constructed to
capture unusual features in the data.

For r× c categorical tables the Bayes factor is used to quantify the difference
between a model with association and one without. This is the ratio of the
posterior odds of one model to the other to their prior odds, and it is the same as
the ratio of the marginal likelihoods of the data under two models, one without
association and the other with association. The Bayes factor has recently been of
much scientific interest. However, there are two important difficulties with the use
of the Bayes factor. First, it is sensitive to the prior specifications, especially when
there are not enough data to estimate the parameters under test; see Sinharay
and Stern (2002) for an interesting discussion on nested models. Second, but less
important is that we need to be careful with its interpretation; see Lavine and
Schervish (1999). We discuss these issues in detail in Appendix A.

It is natural to think about alternative approaches when the cell counts do
not follow a multinomial distribution, or some cell counts are small or zero. A
Bayesian approach to the problem is desirable especially when the assumption
of multinomial distribution does not hold. In this case, one can use the Bayes
factor for testing association versus no association. The purpose of this paper is
to alert practitioners of the improper routine use of the chi-squared test or Bayes
factor, and to suggest alternatives. Thus, the reasons for writing this paper are:

a. To review some of the defects of standard chi-squared testing;

b. To show that the Bayes factor is defective as an alternative to the chi-
squared test because it is sensitive to prior specifications;

c. To construct a Bayesian estimative alternative to the Bayes factor based on
the interactions in the r × c table.
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This paper has five more sections. Section 2 has a review on chi-squared test
and Bayesian test. In Section 3 we present the Bayesian estimative alternative
to the test of independence. Section 4 has a review of chi-squared testing and
intra-class correlation and a simple implementation of the estimative procedure.
Section 5 shows several examples which are related to activity limitation and age,
forms of material and heat in fire incidences, and body mass index and family
income. Section 6 has a discussion.

2. Chi-squared Test and Bayesian Test: A Review

In this section we give a detailed quantitative review of the chi-squared statis-
tic and the Bayes factor for tests of association between the two categorical vari-
ables in a r × c categorical table.

2.1 Standard chi-squared test

Let njk denote the number of individuals in the jth row and kth column of the
r×c categorical table. Also let nj· =

∑c
k=1 njk, j = 1, . . . , r; n·k =

∑r
j=1 njk, k =

1, . . . , c; n =
∑r

j=1

∑c
k=1 njk and ejk = nj·n·k/n, j = 1, . . . , r; k = 1, . . . , c.

Then, Pearson’s chi-squared statistic, under independence of the row and column
classifications, is

Xu =
r∑

j=1

c∑
k=1

(njk − ejk)2/ejk.

If the responses from the individual members are independent and identically
distributed, then as n goes to infinity, Xu converges in law to a chi-squared
random variable with (r − 1)(c − 1) degrees of freedom. In practice, the validity
of the chi-squared test depends on (a) the magnitude of the expected values
ejk, and (b) whether the cell counts (njk, j = 1, . . . , r; k = 1, . . . , c) follow a
multinomial distribution given the sample size n (i.e., the individual responses
are independent and identically distributed). In (a) the test is valid if the ejk

are all larger than 5; see Greenwood and Nikulin (1996, Chapter 1, Section 2).
Clearly the only way to achieve this is to increase the sample size subject to cost.
In (b) when there is correlation among the members (e.g., intra-class correlation),
the asymptotic distribution of Xu is no longer χ2

(r−1)(c−1), and the estimates of
the cell proportions can be inaccurate. The Pearson chi-squared test has received
much attention. See Mirkin (2001) for a review of interpretations of the chi-
squared statistic as a measure of association or independence.

We describe one solution that has been proposed for the problem about the
asymptotic distribution when sampling is not simple random sampling. Let nt

denote the number of members in all families of the same size t = 1, . . . , T , and
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let θt denote the intra-class correlation for clusters of size t (θ1 ≡ 0). First,
we describe the method of Rao and Scott (1981). Omitting redundancy, let
V and W be the covariance matrices of the estimators of the cell proportions
under the assumption of simple random sampling and a “complex” sample design
respectively.

The design effects are the eigen-values of the matrix V −1W , and the adjusted
chi-squared statistic is χ2

u/a, where a is the average of the eigen-values. Motivated
by Rao and Scott (1981), for cluster sampling Choi and McHugh (1989) derives
the following adjusted chi-squared statistic

Xa = Xu{1 + n−1
T∑

t=1

(t − 1)ntθ̂t}−1,

where θ̂t is the maximum likelihood estimator of θt under their model. The
statistic Xa ∼ χ2

(r−1)(c−1) asymptotically, an improvement over Xu (i.e., more
accurately χ2

(r−1)(c−1)). The p-value corresponding to the adjusted chi-squared
statistic will be larger. For weighted data they divide Xa by the average weight.
We note that sometimes Xa is difficult to compute because W itself is difficult
to compute.

2.2 Bayes factor

We now discuss the Bayes factor as an alternative to the chi-squared test. If
two models, M0 and M1, are fit to data y

∼
, the Bayes factor for comparing models

M1 and M0 is defined as the ratio of the marginal likelihoods of the data y
∼

as

B10 =
p(y

∼
|M1)

p(y
∼
|M0)

with p(y
∼
| Mk) =

∫
p(y

∼
|θk∼

,Mk)p(θ∼k | Mk)dθ∼k, k = 0, 1,

where θ∼k
is the parameter vector under Mk, p(y

∼
|θ∼k

,Mk) is the probability den-
sity (or mass) function and p(θ∼k | Mk) is the prior density. For example, in our
application M0 is the model of no association and M1 is the model of association,
or vice versa. The Bayes factor summarizes the evidence provided by the data in
favor of one scientific hypothesis M1 relative to another M0. Kass and Raftery
(1995) gave a comprehensive description of Bayes factors including their inter-
pretation. For example, if 0 ≤ loge(B10) < 1, the evidence against M0 is “not
worth more than a bare mention”; if 1 ≤ loge(B10) < 3, the evidence against M0

is “positive”; if 3 ≤ loge(B10) < 5, the evidence against M0 is “strong”; and if
loge(B10) ≥ 5, the evidence against M0 is “very strong”.

For the r × c categorical table, we can consider two multinomial-Dirichlet
models, one with association and the other with no association. The model with
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association is n∼ | π∼ ∼ Multinomial(n, π∼ ) and π∼ ∼ Dirichlet(1, . . . , 1). Thus, for
the model with no association, with πjk = π

(1)
j π

(2)
k , j = 1, . . . , r; k = 1, . . . , c;

n∼ | π∼
(1), π∼

(2) ∼ Multinomial(n, π∼ ), π∼
(1) ∼ Dirichlet(1, . . . , 1), and independently

π∼
(2) ∼ Dirichlet(1, . . . , 1), where π∼

(1) and π∼
(2) have r and c components respec-

tively. It is easy to show that the marginal likelihood with association (as) is
pas(n∼ ) = (rc − 1)!n!/(n + rc − 1)! and with no association (nas) is

pnas(n∼ ) = pas(n∼ )
(r − 1)!(c − 1)!

(rc − 1)!
(n + rc − 1)!

(n + r − 1)!(n + c − 1)!

∏r
j=1 nj·!

∏c
k=1 n·k!∏r

j=1

∏c
k=1 njk!

.

Unfortunately, with this approach, the Bayes factor is sensitive to the prior
specification (e.g., π∼ ∼ Dirichlet(1∼)). It is well-known that π∼ ∼ Dirichlet(1/2, 1/2,
..., 1/2) will give different inference from π∼ ∼ Dirichlet(1∼); e.g., see Nandram, Cox
and Choi (2005), Nandram and Choi (2006) and the examples in Section 5. Thus,
we consider estimation theory (credible intervals) to form a test (i.e., an inverted
interval).

How sensitive is the Bayes factor to the choice of the prior distributions?
First, note that the prior density, any reasonable person might use in this prob-
lem, is the Dirichlet distribution. For the model with association we have se-
lected the prior distributions to be π∼ ∼ Dirichlet(κ∼ ), and for the model with no
association π∼

(1) ∼ Dirichlet(κ∼
(1)) and independently π∼

(2) ∼ Dirichlet(κ∼
(2)). Let

n
(1)
j· =

∑c
k=1 njk, j = 1, . . . , r and n

(2)
·k =

∑r
j=1 njk, k = 1, . . . , c. Then, it is easy

to show that the Bayes factor for a test of association versus no association is

BF =
Drc(n∼ + κ∼ )/Dr(n∼

(1)
· + κ∼

(1))Dc(n∼
(2)
· + κ∼

(2))
Drc(κ∼ )/Dr(κ∼

(1))Dc(κ∼
(2))

,

where generically Dk(c∼t) = {∏k
j=1 Γ(cjt)}/Γ(t) is the Dirichlet function with

t > 0, cj > 0,
∑k

j=1 cj = 1. Then, we can choose each of the components of κ∼ ,
κ∼

(1) and κ∼
(2) to be δ [e.g., in pas(n∼ ) and pnas(n∼ ), δ = 1]. Sensitivity to the choice

of prior distributions can be studied in terms of δ. Here δ = 1 corresponds to the
uniform prior distribution and δ = .50, Jeffreys’ prior; these are “noninformative”
priors usually used in the multinomial-Dirichlet model. We will call a study of
BF as a function of δ a sensitivity analysis. In a small sensitivity analysis we can
study the behavior of BF at δ = 0.1, 0.5, 1., 1.5, 2, 3 with illustrative example.

3. The Bayesian Estimative Alternative to the Test of Independence

Our test for independence is simple, and our discussion consists of two parts.
First, we state and prove a theorem which shows that the test of association
is equivalent to a test that the (r − 1)(c − 1) two-way interactions are all 0.
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Second, rather than using the Bayes factor for hypothesis testing, we obtain
a 95% simultaneous credible region, a hyper-rectangle, for the (r − 1)(c − 1)
interaction effects in the two-way table, and then we check to see whether each
interval contains 0. Thus, we consider the problem of estimating the effects in a
r × c categorical table.

Our basic model is
n∼ | π∼ ∼ Multinomial(n∼ , π∼ ),

where n∼ = {njk, j = 1, ..., r, k = 1, ..., c} is the vector of cell counts. A priori
we take π∼ ∼ Dirichlet(1∼), where 1∼ is a rc vector of ones. It is well-known that a
posteriori

π∼ | n∼ ∼ Dirichlet(n∼ + 1∼),

where 1∼ is a vector of ones.
Now, we include the effects in the r × c table by taking

πjk = Aeαj+βk+γjk , j = 1, . . . , r; k = 1, . . . , c,

where A−1 =
∑r

j=1

∑c
k=1 eαj+βk+γjk with the corner-point restrictions αr = βc =

γjc = γrk = 0, j = 1, . . . , r; k = 1, . . . , c, instead of
∑r

j=1 αj =
∑c

k=1 βk = 0,∑r
j=1 γjk = 0, k = 1, . . . , c;

∑c
k=1 γjk = 0, j = 1, . . . , r. Note that in the general

log-linear model for r × c tables log(nπjk) = µ + αj + βk + γjk, and the grand
mean µ gets absorbed into A; see Agresti (1990, Section 5.1) for a discussion of
the saturated model.

It is intuitive that πjk = π
(1)
j π

(2)
k , j = 1, . . . , r; k = 1, . . . , c is equivalent to

γjk = 0, j = 1, . . . , r, k = 1, . . . , c. Although there are related results elsewhere
(e.g., Agresti 1990), we state the following theorem, which will be proved in
Appendix B.

Theorem Suppose that αr = βc = 0, γjc = 0, j = 1, . . . , r and γrk = 0; k =
1, . . . , c. Then, πjk = π

(1)
j π

(2)
k , j = 1, . . . , r; k = 1, . . . , c is equivalent to γjk =

0, j = 1, . . . , r, k = 1, . . . , c.

That is, to test for independence, one can use the interactions γjk to provide a
simultaneous inference on γjk, j = 1, . . . , r − 1, k = 1, . . . , c − 1.

Let qjk, j = 1, . . . , r; k = 1, . . . , c denote the log contrasts. Specifically,
qjk = log πjk − log πrc. Then,

qjk = αj + βk + γjk, j = 1, . . . , r − 1; k = 1, . . . , c − 1,
qjc = αj , j = 1, . . . , r − 1,
qrk = βk, k = 1, . . . , c − 1. (3.1)
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Note that qrc = 0. It follows easily from (3.1) that

αj = log πjc − log πrc,

βk = log πrk − log πrc,

γjk = [log πjk − log πrc] − [log πjc − log πrc] − [log πrk − log πrc], (3.2)

j = 1, . . . , r − 1, k = 1, . . . , c − 1. Note that the effects in (3.2) are simple linear
functions of the log contrasts.

We need a 95% simultaneous credible region for γjk, j = 1, . . . , r − 1; k =
1, . . . , c − 1. We can do so using the method of Besag et al. (1995). Note that
we do not need to specify the prior distributions of the αj , βk and γjk. These
parameters inherit their prior and posterior densities from the πjk.

It is easy to draw a random sample from π∼ | n∼ ∼ Dirichlet(1∼). Let π∼
(1), . . . , π∼

(M)

denote a large random sample (M=10,000). Then we have automatically a large
random sample from the posterior distribution of γ

∼
by taking

γ
(h)
jk = [log π

(h)
jk − log π(h)

rc ]− [log π
(h)
jc − log π(h)

rc ]− [log π
(h)
rk − log π(h)

rc ], h = 1, ...,M.
(3.3)

Now, we can find a 95% simultaneous credible region for the {γjk}, obtained by
using the sample {γ(h)

jk }, h = 1, . . . ,M ; see our Appendix C for the method of
Besag et al. (1995).

Note that for a 2×2 table, there is just a single γ, so that we can have a credible
interval for γ. Here γ = [log π11−log π12]−[log π21−log π22] = log[π11π22/π12π21],
the log of the odds ratio. So the odds ratio is exp(γ), and we can find a 95%
credible interval by using exp(γ(h)), h = 1, ...,M .

Note that the 95% simultaneous credible region formed by this procedure (if
r, c > 2) is a hyper-rectangle. We can form a test that γjk = 0, j = 1, . . . , r −
1; k = 1, . . . , c − 1, easily. This is done by simply checking that the hyper-
rectangle contains γ

∼
= 0∼ . If each of the components of γ

∼
contains 0, then the

hyper-rectangle does. That is, if all components of γ
∼

are 0, there is independence
(i.e., no association) between the two attributes, and if at least one component
of γ

∼
does not contain 0, there is dependence (i.e., association) between the two

attributes. This is analogous to the F-test of the regression coefficients in a
normal-theory linear regression model.

In a r × c table there are (r − 1)(c − 1) interactions. The theorem shows
that under independence all these interactions must be zero. One should not
compute (r − 1)(c − 1) individual 95% credible intervals, because the overall
coverage will be much less than 95%. Thus, a 95% simultaneous credible region
(a hyper-rectangle in (r − 1)(c − 1) dimensional Euclidean space) is needed; see
Miller (1981) for a general discussion of simultaneous inference. Simultaneous
regions of the regression parameters in the standard normal theory linear model
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are optimal ellipsoid (Box and Tiao, 1973). However, because r and c are both
generally small, the individual intervals which form the hyper-rectangle are not
much wider than those from the individual 95% credible intervals.

4. Chi-Squared Testing and Intra-Class Correlation

Nandram and Choi (2006) used results from Altham (1976) to describe a
Bayesian methodology to fit “multinomial” data when there is an intra-class
correlation. We first review this model, and we show how to obtain the 95%
simultaneous credible intervals for the interactions. We show more explicitly the
difficulties using the chi-squared test in the situation when there is an intra-class
correlation.

Suppose there are si individuals in the ith cluster, i = 1, . . . , 	, and sijk

individuals fall in the jth row and kth column in the r × c table, j = 1, ...r; k =
1, ..., c. Here

∑r
j=1

∑c
k=1 sijk = si, sijk ≥ 0. Also, let C denote the set of clusters

in which all individuals fall in a single cell of the r×c table. Then, using formulas
in Altham (1976) and letting s∼i

= (si11, . . . , sirc), i = 1, . . . , 	,

p(s∼ i
| θsi, π∼ ) =




θsiπjk + (1 − θsi)π
si
jk, i ∈ C

(1 − θsi)si!
∏r

j=1

∏c
k=1 π

sijk

jk /sijk! i /∈ C,

(4.1)

where we take θ1 = 0 for one-member family. Let s = (s∼1, . . . , s∼�).
Suppose each cluster has size t, t = 1, ..., T ; in applications T is 2 to 5 or

so. Also, let gtjk denote the number of clusters in C of size t with all individuals
in cell (j, k), and g̃t the number of clusters of size t outside C. Then, assuming
independence over the clusters,

p(s | θ∼ , π∼ ) = [
T∏

t=1

r∏
j=1

c∏
k=1

{θtπjk + (1 − θt)πt
jk}gtjk ]

× [
T∏

t=1

(1 − θt)g̃t{
∏
i/∈C

si!
r∏

j=1

c∏
k=1

π
sijk

jk /sijk!}]. (4.2)

Note that when πjk = π
(1)
j π

(2)
k , we simply replace πjk in (4.2) by π

(1)
j π

(2)
k to form

p(s∼ | θ∼ , π∼
(1), π∼

(2)). Note also that there are two parts in (4.2), one corresponds to
the clusters in C and the other to those clusters outside C.

Finally, for a full Bayesian approach, noting that θ1 ≡ 0, we assume

θt
iid∼ Uniform(0, 1), t = 2, . . . , T (4.3)
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and independently
π∼ ∼ Dirichlet(1,. . . ,1). (4.4)

The prior densities in (4.3) and (4.4) are relatively noninformative but proper.
Thus, the posterior density is

p(θ∼ , π∼ | s) ∝ p(s∼ | θ∼ , π∼ ).

Nandram and Choi (2006) show how to use the Gibbs sampler to fit the posterior
density.

The estimative procedure is easy to implement. The procedure to obtain the
95% simultaneous credible region for γ

∼
is similar to the one in Section 3. Here we

obtain sample {π(h)
jk }, h = 1, . . . ,M from the posterior density p(θ∼ , π∼ | s); here

θ∼ is a nuisance parameter. We obtain samples from the posterior density of γ
∼
.

That is, we use (3.3) to obtain {γ(h)
jk }, h = 1, . . . ,M = 10, 000.

Finally, for comparison to test for association versus no association between
the two attributes, we can use the Bayes factor. Retaining the prior distribution
in (4.3), the other two prior distributions are

π∼
(1) ∼ Dirichlet(1,. . . ,1) and independently π∼

(2) ∼ Dirichlet(1,. . . ,1). (4.5)

Recalling that the vector π∼
(1) has r components and π∼

(2) has c components, the
marginal likelihoods with association is

pas(s) = (rc − 1)!
∫ ∫

p(s∼ | θ∼ , π∼ )dθ∼dπ∼

and the marginal likelihood with no association is

pnas(s) = (r − 1)!(c − 1)!
∫ ∫ ∫

p(s∼ | θ∼ , π∼
(1), π∼

(2))dθ∼dπ∼
(1)dπ∼

(2).

Nandram and Choi (2006) construct Monte Carlo consistent estimators of the
marginal likelihoods.

5. Examples

In this section we discuss four examples to compare the methods for testing
association in r× c categorical tables, and to show sensitivity of the Bayes factor
to prior specifications. In Example 1 we show that inference from the chi-squared
test and the simultaneous credible region is similar, but this differs from that of
the Bayes factor. In Example 2 we show that when there is a strong association,
the three methods give the same inference.
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While in Examples 1 and 2 there is mild sensitivity of the Bayes factor to
the choice in the prior specifications, in Example 3 we show that there could be
strong sensitivity to the prior specifications and to the stability of a cell size. In
Example 4 we show how the intra-class correlation affects inference by the three
methods.

5.1 Example 1: Bone mineral density and family income

We consider the 3 × 3 categorical table of bone mineral density (BMD) and
family income (FI) for a probability sample drawn from the U.S. population.
FI is a discrete variable, and there are three levels: low, medium and high.
While BMD is a continuous variable, the World Health Organization has classified
BMD into three levels: normal, osteopenia and osteoporosis. BMD is used to
diagnose osteoporosis, a disease of elderly females, and in the National Health
and Nutrition Examination Survey (NHANES III) it is measured for individuals
at least twenty years old. In Table 1 we summarize the data on white females
with chronic conditions.

Table 1: Classification of bone mineral density (BMD) and family income (FI)
for 1,844 white females, at least 20 years old (20+)

FI

BMD 1 2 3
1 621 290 284
2 260 131 117
3 93 30 18

Note: BMD: 1(> 0.82g/cm2; normal), 2(> 0.64,≤ 0.82g/cm2; osteopenia),
3(≤ 0.64g/cm2; osteoporosis); FI: 1(< $20, 000), 2(≥ $20, 000, < $45, 000),
3(≥ $45, 000); BMD is only measured for age 20+.

Under independence (i.e., no association) the observed chi-squared statistic is
12.7 on 4 degrees of freedom with a p-value of .013, and no association is rejected.
The log Bayes factor is 3.40 for evidence of no association relative to association.
Therefore, while the chi-squared test provides strong evidence against no associ-
ation, the log Bayes factor provides strong evidence for no association. This is
the contradictory evidence because the chi-squared test rejects independence and
the Bayes factor accepts independence.

Our new test, the 95% simultaneous credible region, for (γ11, γ12, γ21, γ22) is
(−1.47, −0.24), (−1.21, 0.23), (−1.49, −0.19), (−1.15, 0.36). Thus, this region
does not contain (0, 0, 0, 0), (i.e., only two contain the 0), and like the Pearson
chi-squared test, it rejects independence (or no association); this is different from
the Bayes factor.
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We have performed the sensitivity test of Bayes factor for the prior parameter
δ = .1, .5, 1., 2., 3. The corresponding values of the log Bayes factor are −7.0, −
3.6, −3.4, −4.7, −6.6. As expected, as δ increases, the independence hypothesis
becomes stronger. The log Bayes factor is sensitive to the choices of the prior
δ, but around δ = 1 (i.e., the uniform prior), there is little sensitivity of the log
Bayes factor. Here the evidence for independence from both prior distributions
(Jeffreys and uniform) is “strong”, and this evidence increases on either side
of δ = 1. We note that over these values of δ the 95% simultaneous region
changes very little as seen above (i.e., independent from the prior sensitivity),
and inference is unaffected.

5.2 Example 2: Material and Heat

The U.S. Consumer Product Safety Commission (CPSC) staff analyzes fire
incident data to determine patterns and losses (e.g., fire deaths, injuries and
property damage) associated with fires that involve household products. The
purposes of this analysis are (1) to support or evaluate standards that would make
household products less likely to ignite and (2) to identify products that pose new
hazards and the patterns of usage associated with such hazards. Attributing fire
losses to fire causes is an important part of this task (Greene et al. 2002). In
Table 2 we present a 4 × 6 table of forms of materials by forms of heat of 468
fires completely classified, a scaled down version of a typical problem at CPSC
(Greene et al. 2002). Note the sparseness of the data in Table 2 makes the
standard asymptotic chi-squared test untrustworthy.

Table 2: Classification of fire deaths by form of materials and form of heat for
468 fires

Form of heat
Form of
Materials 1 2 3 4 5 6
1 55 20 13 14 51 20
2 21 4 18 16 74 20
3 4 21 18 12 15 30
4 8 7 1 2 21 3

Note: As reported by Greene et al. (2002) the values in the table do not rep-
resent actual data which they described as a scaled down hypothetical CPSC
raking problem. Forms of materials are 1(Not furniture), 2(Furniture not in
scope), 3(Upholstered furniture), 4(Unknown furniture), and forms of heat are
1(Fuel fired in scope), 2(Fuel fire not in scope), 3(Fuel fire unknown if in scope),
4(Smoking materials in scope), 5(Smoking materials not in scope) and 6(Smok-
ing materials unknown if in scope).
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Under independence condition (i.e., no association), both chi-squared test
and Bayes factor reject the independence (or no association) (i.e., the observed
chi-squared statistic is 102.4 on 15 degrees of freedom with a p-value of .000 and
the log Bayes factor is 32.1).

The new method produces the same result as the other two tests (i.e., the 95%
simultaneous credible region for (α11, . . . , α15, . . . . . . , α35) is (−1.99, 1.88), (−2.88,
1.06), (−2.24, 3.74), (−2.44, 2.72), (−2.88, 0.68), (−2.89, 1.02), (−4.68, −
0.16), (−1.95, 4.05), (−2.33, 2.83), (−2.45, 1.10), (−5.15, −0.74), (−3.30, 0.72),
(−2.26, 3.63), (−3.09, 2.19), and (−4.54, −0.87)). Note that the intervals corre-
sponding to α22, α31 and α35 do not contain 0. Thus, this region does not contain
the origin in the 15-dimensional space, and also rejects independence. Although
the data are sparse for at least unknown furniture (4), all three procedures give
similar results, partly because the nature of data has a very strong association.
Also, note that the Monte Carlo errors associated with estimating the γjk are all
smaller than 0.01 (i.e., the estimative procedure is highly reproducible).

We have performed the sensitivity analysis as in Example 1. At δ = .1, .5, 1.,
2., 3. the values of the log Bayes factor are 16.9, 30.3, 32.1, 30.3, 27.0; also at
δ = 10, it is 7.4 and at δ = 20, it is −7.1. As expected, as δ increases, the log
Bayes factor decreases. Again while the log Bayes factor is sensitive to changes
in δ, inference is not so sensitive around δ = 1 (“very strong” evidence anyway).
There is a large change from δ = .1 to δ = .5. Again, we note that over these
values of δ the 95% simultaneous region changes very little, and inference is
unaffected.

5.3 Example 3: Artificial example for sensitivity analysis

We have constructed a simple example to study the sensitivity of the Bayes
factor to the prior specification and the stability of a small cell. This is a 3 × 3
table of two attributes; the cell counts are 50, 50, 25, 50, 50, 20, 40, 30, 1,
starting from the (1, 1) cell going across the rows. Note that cell (3, 3) is small
(i.e., 1).

At δ = .10, .15, .25, .50, 1.00, 2.00, 3.00, 4.00, 5.50, the log Bayes factor
are −0.56, 0.55, 1.73, 2.86, 3.24, 2.69, 1.84, 0.98, −.21. Note that at
δ = .5 the evidence against an association is “positive” (i.e., 2.86), at δ = 1 the
evidence against an association is “strong” (i.e., 3.24), and at δ = 2 the evidence
against an association is “positive” (i.e., 2.69), again. Thus, the log Bayes factor
is sensitive to the choice of the prior distribution, but the change in the evidence
against association is small. We note also that there is no change in the evidence
against association using the 95% simultaneous credible region.

In Figure 1 we have presented a plot of the log Bayes factor by δ for five
values of the (3, 3) cell (i.e., albf1 corresponds to n33 = 1; albf2 to n33 = 2;
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albf3 to n33 = 3; albf4 to n33 = 4; and albf5 to n33 = 5). Observe how sensitive
the Bayes factor is to the value of the (3, 3) cell, and to the choices of δ. As
δ moves away from one on either side, the log Bayes factor decreases rapidly
from a positive value to negative values. The chi-squared test of no independence
versus independence is not better. At n33 = 1, 2, 3, 4, 5 the p-values are
.006, .015, .031, .061, .106 respectively. Independence is rejected at the 5%
significance level for the first three choices of n33 but not at the others, showing
sensitivity to n33. Inference from the estimative alternative remains unaltered.

Figure 1: Scatterplots of log Bayes factor versus δ by size of the (3, 3) cell in
artificial example; in order from top: albf1 - cell (3, 3) has 1 observation; albf2
- cell (3, 3) has 2 observations; albf3 - cell (3, 3) has 3 observations; albf4 - cell
(3, 3) has 4 observations; albf5 - cell (3, 3) has 5 observations.
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5.4 Example 4: Activity limitation status and age with intra-class cor-
relation

We use data from the U.S. National Health Interview Survey on activity
limitation status (ALS), a measure of long-term disability resulting from chronic
conditions. In Table 3 we present a 3 × 3 categorical table of ALS by age for
two states. In State 1 there are 164 sampled adults and in State 2 there are
153 sampled adults. Note that in both tables there are very sparse cell counts
especially for the first category of ALS in State 1. We also note that in both
tables, members are from 1-member to 5-member families.

Table 3: Classification of activity limitation status (ALS) and Age for two
states

Age

State 1 State 2

ALS 1 2 3 1 2 3
1 2 3 2 9 8 0
2 9 4 2 16 6 6
3 107 17 18 78 15 15

Note: ALS (1: unable to perform major activity; 2: limited in kind/amount ma-
jor activity and limited in other activities; 3: not limited (includes unknowns))
and Age (1: under 56 years; 2: 56-70 years; 3: over 70 years).

There is significant correlation between the two members of the 2-member
families. A 95% confidence interval for θ2 in State 1 is (.36, .71) and in State
2 it is (.50, .81) (θ2 is the intra-class correlation between the two members in
the 2-member families). The intra-class correlations among the members of the
3-member, 4-member and 5-member families are not substantial. Thus, we need
to adjust the chi-squared test for intra-class correlation. We discuss each state
separately.

First, consider State 1. For a test of no association versus association, the
log Bayes factor is 5.40 for the model with intra-class correlation and 2.56 for
the model with no intra-class correlation. This difference is important because
the evidence in the former is “very strong” (i.e., 5.40) whereas in the latter it is
“positive” (i.e., 2.56).

The unadjusted chi-squared statistic is 9.60 on 4 degrees of freedom with a p-
value of .048, and the adjusted chi-squared statistic is 7.75 on 4 degrees of freedom
with a p-value of .101. Thus, the adjusted test does not reject the hypothesis of
independence (i.e., p=0.048) whereas the unadjusted test rejects independence
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(i.e., p=0.101) at the 5% significance level, with the unadjusted chi-squared test
leading to an erroneous conclusion.

Using the model with intra-class correlation the 95% simultaneous credible
region is formed by the intervals (-2.93, 4.49), (-2.66, 5.59), (-2.56, 2.43), (-
2.12, 3.29); all the intervals contain 0 and the estimative procedure does not
reject independence (same conclusion as the adjusted chi-squared test). We note
that, using the model with no intra-class correlation, inference from the 95%
simultaneous credible region remains unchanged. This implies that the two dif-
ferent correlation models (intra-class and no intra-class) does not give different
results for the border line situations (seen for both Bayes factor and chi-squared
test).

Second, consider State 2. For a test of association versus no association, the
log Bayes factor is 3.09 for the model with intra-class correlation and 0.38 for the
model with no intra-class correlation. This difference is important because the
evidence of the difference between association and no association in the former is
“strong” whereas in the latter it is “not worth more than a bare mention”.

The unadjusted chi-squared statistic is 13.52 on 4 degrees of freedom with
a p-value of .009, and the adjusted chi-squared statistic is 11.18 on 4 degrees
of freedom with a p-value of .025. Thus, there is strong evidence against inde-
pendence with the unadjusted test, but for the test adjusted for correlation, the
evidence is marginal at the 2.5% significance level.

Using the model with intra-class correlation, the 95% simultaneous credible
region is formed by the intervals (-2.39, 5.09), (-1.35, 5.95), (-4.49, -0.26), (-
2.39, 1.16); only the interval for γ21 does not contain 0, and the estimative
procedure rejects independence (or no association). Using the model with no
intra-class correlation inference from the 95% simultaneous credible region re-
mains unchanged, but now it is only the credible interval for γ12, not γ21, that
does not contain 0.

6. Discussion

We have reviewed two current tools, the chi-squared test and the Bayes factor,
to test for association in two-way tables. We have demonstrated the difficulties
associated with the standard chi-squared test in two-way categorical tables when
the multinomial assumptions are violated. We have also demonstrated difficulties
associated with the use of the Bayes factor, especially its sensitivity to prior spec-
ifications. To overcome these problems, we propose a new method for “testing”
association, capitalizing on the fact that Bayesian hypothesis testing is sensitive
to prior specifications whereas estimation is not that sensitive.

Thus, responding to the important issue of the sensitivity of Bayes factors to
the choice of the prior distributions in Bayesian hypothesis testing, we introduce
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a Bayesian estimative procedure for the analysis of two-way categorical tables.
In a two-way categorical table, we have utilized a standard relation between the
cell probabilities and the main effects and the interactions. A 95% simultaneous
credible region for the interactions provides a “test” of independence. This is
easy to implement, and it requires samples from the posterior distribution of the
interactions.

We also demonstrated that the chi-squared test is inaccurate in nonstan-
dard situations such as when there is intra-class correlation in the data (e.g.,
familial data). These situations require a model more elaborate than the simple
multinomial-Dirichlet model. Thus, the chi-squared test needs special adjust-
ment, and the Bayes factor is also sensitive to prior specifications. Our new
method about independence via the 95% simultaneous credible region is simple
and not sensitive to prior specifications. When there exists strong association
between the two attributes, the three methods give the same conclusions. When
there are borderline cases, adjustment is necessary, and our method should to be
preferred.

We recommend the 95% simultaneous credible region to make inference about
independence in two-way categorical tables in non-standard situations where both
the chi-squared test and Bayes factor can fail. One can possibly quantify the
strength of the evidence by counting the number of credible intervals containing
0; this is a topic for further research. There are other situations where the 95%
simultaneous credible region will be useful. For example, when missing data
differ from observed data, the chi-squared test will fail. It is possible to extend
our Bayesian estimative procedure to higher dimensional categorical tables. We
have not addressed model averaging in this paper because a test is performed
using a selected model.

Appendix A: A Discussion of the Defects of the Bayes Factor

We discuss some defects of the Bayes factor in hypothesis testing. The discus-
sion here holds for any Bayesian hypothesis testing problem in which the Bayes
fastor is used. Thus, specifically it applies directly to the test of association in a
r × c categorical table.

Kass and Raftery (1995) have popularized the use of the Bayes factor in sci-
entific problems. However, they have discussed controversies associated with the
use of the Bayes factor. As is well known, Bayes factor requires the specification
of a prior distribution. They stated, “This may be considered both good and
bad. Good, because it is a way of including other information about the values
of the parameters. Bad, because these prior densities may be hard to set when
there is no such information.” Indeed, a serious problem with the Bayes factor
is the sensitivity to the prior specification as Kass and Raftery (1995) wrote “An
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important issue is the sensitivity of the Bayes factor to the choices of priors.”
With respect to the sensitivity of the Bayes factor to the choices of priors, Kass

and Raftery (1999) wrote “Also in contrast with Bayesian point estimates such
as the posterior mean, the Bayes factor does tend to be sensitive to the choices of
priors on the model parameters,” and they also stated that “Bayes factor tends
to be more sensitive to the choice of prior than the posterior probability of an
interval.” These statements are now well known (e.g., see Kass 1993). Berger
and Pericchi (1996) agrue that one should operate in strict accordance with two
basic premises, selection should have a Bayesian basis and it should be automatic,
and they stated that “The reason is that Bayes factors in hypothesis testing and
model selection typically depend rather strongly on the prior distributions, much
more so than in, say, estimation.” We take advantage of these difficulties of the
Bayes factor to construct a Bayesian estimative alternative to test of association
in a two-way categorical table.

For a sensible calibration of the Bayes factor proper priors are needed (i.e.,
they must integrate to 1). Berger and Pericchi (1996) wrote “For most model
selection problems, one cannot use standard improper noninformative priors; such
priors are defined only up to a constant multiple, and the Bayes factor is itself
a multiple of this arbitrary constant.” Of course, this difficulty can be overcome
by using proper priors, but then there is the issue of the sensitivity to prior
specification. To overcome this problem, Berger and Pericchi (1996) introduced
the intrinsic Bayes factors. But these also have their own problems. Clearly,
intrinsic Bayes factors are not Bayes factors, they require part of the data to
be treated as a training sample, they require enormous computation even if a
minimal training sample or a small random sample of the set of training samples
is used, and they are not calibrated with respect to the strength of the evidence
as in Kass and Raftery (1995). Moreover, for our problem in the r× c categorical
table, the set of minimal training samples is essentially empty; both Jeffreys’
prior and the uniform prior are proper. The use of the intrinsic Bayes factor fixes
the calibration problem, but not the sensitivity problem, and therefore, they are
not appropriate in our context.

There is also a difficulty in interpreting the Bayes factor as pointed out by
Lavine and Schervish (1999), “The removal of the prior odds from the posterior
odds to produce the Bayes factor has consequences that affect the interpretation
of the resulting ratio.” As pointed out by Lavine and Schervish (1999), “Just be-
cause the data increase the support for a hypothesis H relative to its complement
does not necessarily make H more likely than its complement, it only makes H
more likely than it was a priori.” See Lavine and Schervish (1999) for further
discussion. We do not address this issue further in this paper.
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Appendix B: Proof of the Theorem

Suppose γjk = 0, j = 1, . . . , r − 1; k = 1, . . . , c − 1. Then, it is easy to show
that

πjk = [eαj /
r∑

j′=1

eαj′ ][eβk/
c∑

k′=1

eβk′ ], j = 1, . . . , r; k = 1, . . . , c.

Now, set π
(1)
j = eαj /

∑r
j′=1 eαj′ , j = 1, . . . , r and π

(2)
j = eβk/

∑c
k′=1 eβk′ , k =

1, . . . , c.
Suppose πjk = π

(1)
j π

(2)
k , j = 1, . . . , r; k = 1, . . . , c. Then, using γjc = 0, j =

1, . . . , r and γrk = 0, k = 1, . . . , c, it follows that

γjk = constant, j = 1, . . . , r − 1; k = 1, . . . , c − 1,
c−1∑
k=1

eβk(eγjk − 1) = 0, j = 1, . . . , r − 1.

Thus, the constant is 0, and γjk = 0, j = 1, . . . , r − 1; k = 1, . . . , c − 1.

Appendix C: A Nonparametric Simultaneous Credible Region

We describe the nonparametric method of Besag et al. (1995) to obtain a
simultaneous credible region for γj,k, j = 1, . . . , r − 1; k = 1, . . . , c − 1. For
convenience, we let i = k+(j−1)(c−1), and we rewrite γjk as γi, i = 1, . . . , (r−
1)(c − 1) = 	.

Denoting the stored sample by {γ(h)
i : i = 1, . . . , 	; h = 1, . . . ,M}, or-

der {γ(h)
i : h = 1, . . . ,M} separately for each component i, to obtain order

statistics γ
[h]
i and ranks r

(h)
i , h = 1, . . . ,M . For fixed κ ∈ {1, . . . ,M}, let h∗

be the smallest integer such that γ
[M+1−h∗]
i ≤ γ

(h)
i ≤ γ

[h∗]
i , for all i, for at

least κ values of h; h∗ is equal to the κth order statistic from the set a(h) =
max

{
maxi r

(h)
i ,M + 1 − mini r

(h)
i

}
, h = 1, . . . ,M , that is, h∗ = a[κ].

Then
{[

γ
[M+1−t∗]
i , γ

[t∗]
i

]
: i = 1, . . . , 	

}
form a simultaneous credible region

which contains at least 100κ/M% of the empirical distribution. Thus, if M =
10000 and κ = 95, a 95% simultaneous credible region is obtained.
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