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Abstract: All textbooks and articles dealing with classical tests in the
context of linear models stress the implications of a significantly large F -
ratio since it indicates that the mean square for whatever effect is being
evaluated contains significantly more than just error variation. In general,
though, with one minor exception, all texts and articles, to the authors’
knowledge, ignore the implications of an F-ratio that is significantly smaller
than one would expect due to chance alone. Why this is so is difficult to
explain since such an occurrence is similar to a range value falling below the
lower limit on a control chart for variation or a p-value falling below the lower
limit on a control chart for proportion defective. In both of those cases the
small value represents an unusual and significant occurrence and, if valid,
a process change that indicates an improvement. Therefore, it behooves
the quality manager to determine what that change is in order to have it
continue. In the case of a significantly small F-ratio some problem may be
indicated that requires the designer of the experiment to identify it, and to
take “corrective action”.

While graphical procedures are available for helping to identify some of
the possible problems that are discussed they are somewhat subjective when
deciding if one is looking at an actual effect; e.g., interaction, or whether
the result is merely due to random variation. A significantly small F -ratio
can be used to support conclusions based on the graphical procedures by
providing a level of statistical significance as well as serving as a red flag or
warning that problems may exist in the design and/or analysis.

Key words: F -ratio, linear models, non-linearity, non-additivity, quality
control.

1. Introduction

Control chart procedures have always stressed that any significant or unusual
occurrence must be investigated and explained in attempting to bring a process
into control; i.e., to have a process with only common cause or error variation
in it. As indicated in Montgomery (1996) any significant value indicates that a
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change has occurred in the process. Whether the change is for the better or for
the worse is irrelevant. All are to be investigated. For p-charts, c-charts and
R-charts Gitlow, Oppenheim and Oppenheim (1995-chapter 5) state that values
below the lower control limit are “good” values in the sense that they indicate
that there may have been an improvement in the process. If such is the case and
the cause can be identified then making the change part of the process results
in a permanent improvement in quality. While the “small” value may represent
simply a chance occurrence all other possibilities are to be eliminated before that
conclusion is reached.

This philosophy does not seem to be in use in the field of experimental de-
sign and statistical analysis in general, particularly in the various tests associated
with linear models. All of the F -ratios in linear models with fixed effects are con-
structed essentially as the mean square (MS) for the effect of interest divided by
an estimate of the error variance. If the null hypothesis is true and all assump-
tions underlying the procedure are satisfied then the F -ratio is expected to be
near 1.0. If the null hypothesis is false and all assumptions satisfied then the mean
square for the effect of interest contains both an estimate of the error variance
and a sum of squared terms attributable to the effect of interest. If the effects are
random then the E(MS) for the effect of interest includes the variance for that
effect plus a linear combination of variances for various interactions and the error
term. The F -ratio then compares the effect’s MS to a MS whose E(MS) is the
linear combination of the variances of the various interactions and the error term.
Again, if H0 is true the variance of the effect of interest is zero and the F -ratio
is expected to be 1.00 while if Ha is true the ratio is expected to exceed 1.00. In
a model with mixed effects each term’s E(MS) must be considered individually
in determining the F -ratio. In all cases, the only values indicating rejection of
the hull hypothesis, or supporting the alternative, are large ones. Values for the
F -ratio that are less than 1.0 simply lead to non-rejection of the null hypothesis
and generally are not investigated any further, regardless of their actual magni-
tude. This paper suggests that a significantly small value for the F -ratio should
be investigated further to determine if an explanation can be identified.

2. Literature Search

Many textbooks have been written on the topics of linear models, analysis
of variance (ANOVA) and design of experiments since Sir Ronald A. Fisher’s
original papers were published on agricultural experiments. The texts by Winer
(1962) and Davies (1963) were concerned primarily with industrial and chemical
experiments. Cochran and Cox (1957) and Scheffe’ (1959) wrote texts that took
a more general approach, utilizing a wide range of applications, and have become
classics on experimental design and analysis of variance, respectively. Among
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the more recent texts that have been published and are fairly popular are Hinkel-
man and Kempthorne (1994), Neter, Kutner, Nachtsteim and Wasserman (1996),
Bowerman and O’Connell (1990) and Montgomery (1997). Taguchi (1986) had a
major impact on the implementation of experimental design concepts in the area
of process optimization. The recent texts vary in terms of level of theoretical
presentation and emphasis on applications but none make any mention of giving
consideration to the possible implications of an F -ratio that is significantly small.

The only text that indicates that a small value for the F -ratio should be
flagged is an introductory statistics text by Meek and Turner (1983, p. 456).
Meek and Turner’s (1983, p. 456) only reference to the small F -ratio is in an
example of a two-factor crossed design in ANOVA. In that example they note
that if the problem is analyzed as a one-factor model a small F -ratio occurs and
that it should be investigated further. Meek and Turner (1983, p. 456) point out
that, in the example being discussed, the correct analysis was for a two-factor
model and that the small F -ratio is an indication of a miss-specified model, or
in other words, lack of fit. To date, the only real discussion of the implications
of a significantly small F -ratio was in a preliminary paper by Meek, Ozgur and
Dunning (2005) presented at the Decision Sciences Institute’s Annual meeting
and published in the meeting’s proceedings.

3. The General Case

Suppose the general linear model in

yn×1 = Xn×pβp×1 + εn×1 (3.1)

is the correct representation of y and all distributional assumptions are satisfied.
Then the total sum of squares may be partitioned into the sum of the error
sum of squares and the regression or model sum of squares; i.e., as SSTO =
SSE + SSR, where SSTO = y′y − b′X′y − (

∑
y)2/n, SSE = y′y − b′X′y

and SSR = b′X′y − (
∑

y)2/n. The regression sum of squares in turn can be
partitioned into

SSR = SS(b1|b∗
1) + · · · + SS(bp|b∗

p), (3.2)

where bj
∗ = (b0, . . . , bj−1)′ and bi is the estimate of βi in the parameter vector.

The design matrix, X, in (3.1) may be decomposed into component matrices. For
example, suppose a component consists of k of the independent variables. Then
the columns of X may be rearranged so that the variables of interest correspond
to the last k columns. Thus, the design matrix can be represented as X = [Xp−k :
Xk], the first p − k columns plus the last k columns of X. The reduced model
resulting from this partitioning is

y = Xp−k + βp−k + ε (3.3)
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where βp−k is a p − k vector of unknown parameters. Then, for the reduced
model in (3.3), the sum of squares corresponding to variation explained by the k
omitted variables would be the last k terms on the right in (3.2); i.e.,

SS(bk|bp−k) = SS(bp−k+1|b∗
p−k+1 + · · · + SS(bkbp) (3.4)

The terms in Equation (3.4) are included as part of the SSE when the model
in Equation (3.3) is used and will inflate the estimate of σ2 if they represent more
than chance variation. This, in turn, may result in an F -ratio that is significantly
smaller than would be expected by chance alone. If it is, then an effort should
be made to determine if the model being considered is correct and/or if any
underlying assumptions may be questionable; i.e., try to find a reason. It is
irrelevant whether the Xj’s are quantitative variables, regression, or qualitative
variables, ANOVA, or a combination of the two, ANOCOVA.

The next section presents specific applications, with examples, of F -ratios
that are significantly smaller than would be expected by chance alone. While
these applications are restricted to the general case of omitted terms or factors
in the model other causes such as a violation of the normality or homogeneity
of variance assumptions may result in small F -ratios also. In regression analysis
the presence of multi-collinearity also may result in unusually small F-ratios for
tests of the individual coefficients.

4. Specific Applications

There are several possible reasons for the occurrence of a small F -ratio in
tests of hypotheses in ANOVA. If all of the underlying assumptions are satisfied
and the correct model has been specified then, other than data manipulation, the
only explanation is that of chance variation. In practical applications, though,
one almost never knows how closely the data fit the assumptions or if there are
any terms or factors that have been omitted from the model. Thus, any time
a small value is obtained for the F -ratio the experimenter should check all of
the assumptions and reexamine the model being used. Possible implications are
presented below for three types of situations.

4.1 Randomized Block Design

The basic randomized block design is simply a two factor crossed design with
one observation per cell in terms of its analysis. The basic model is given in
Equation (4.1) and represents a general linear model with two qualitative vari-
ables.

yij = µ + αj + βi + εij (4.1)
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In addition to the usual assumptions underlying the ANOVA procedures the
assumption of no interaction is necessary for constructing the test statistics for
evaluating both treatment and block effects when the effects are fixed. Letting
α represent the treatment effect the mean square associated with treatments,
MSA, then has an expected value of σ2 +

∑
α2

j while the term used for the mean
square ‘error’, MSAB, has an expected value of σ2 only if the interaction term
is zero. Thus, the F -ratio for the null hypothesis of no treatment effect; i.e., H0 :
all αj = 0 vs. Ha :: some αj �= 0, is MSA/MSAB and is expected to be near
1.0 if H0 is true and significantly greater than 1.0 if H0 is not true. There is no
situation in which it is expected to be near 0.0.

On the other hand, if the assumption of no interaction is violated the model
for an observed value is given in Equation (4.2).

yij = µ + αj + βi + αβij + εij (4.2)

The expected value for the MSA is unchanged but the expected value for the
MSAB becomes σ2 +

∑
(αβ)2. Now if H0 is true MSA/MSAB may be small

while if it is false the ratio could be small or large depending on the relative
magnitude of the interaction effect. In either case a value near 0.0 for the F -ratio
should be checked for significance and an attempt should be made to determine a
cause. Tukey’s (1940) test for non-additivity can be used to check formally for a
violation of the assumption of no interaction. If both treatments and blocks rep-
resent random effects then the correct F test statistic is MSA/MSAB whether
interaction is present or not and a significantly small F -ratio might indicate some
other problem.

Example 1: The Graduate Management Admission Test (GMAT) is an exam-
ination used by graduate schools of business (management) to assess an appli-
cant’s ability to pursue an academic graduate program in business. Scores on the
GMAT range from 200 to 800 with higher scores implying higher aptitude. In
an attempt to improve student performance on the GMAT exam, a major Ohio
university is evaluating offering the following 5 GMAT preparation programs.

Program 1: A three-hour review session covering the types of questions gener-
ally asked on the GMAT.

Program 2: A one-day (8 hour) review session covering the relevant material,
along with taking and grading a sample exam.

Program 3: A one-week preparation program covering the relevant material,
along with taking and grading a sample exam.

Program 4: A 4-week intensive preparation program, providing study and
relevant clues, along with taking and grading a sample exam.
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Program 5: An intensive 10-week course (4 hours per week) involving identifi-
cation of student’s weaknesses and setting up of individualized programs to assist
each student.

It is believed that GMAT scores may be related to students’ majors. Using
major as a blocking factor the following three levels are selected:

1. Student’s undergraduate study is from the College of Business Administra-
tion.

2. Student’s undergraduate study is from the College of Engineering

3. Student’s undergraduate study is from the College of Art and Social Sci-
ences

Five students are selected from each major and programs are randomly as-
signed to them. All students sit for the GMAT at the next offering after they
have completed their programs. The GMAT test scores received for this study
are presented in Table 1.

Table 1: GMAT Scores of students classified by Exam Preparation Program

One hour One-day One-week 4-weeks 10-weeks

College of 490 450 600 520 540
Business
College of 520 570 540 540 610
Engineering
College of Arts 520 450 420 450 400
& Social Sciences

An analysis of variance of the scores received resulted in the following:

Analysis of variance for GMAT

Source DF SS MS F P

Program 4 1707 427 0.14 0.962
Major 2 30240 15120 5.02 0.039
Error 8 24093 3012
Total 14 56040

Note that, in the above results, the block effect is significant but the treatment
effect does not appear to be significant. Contrary to expectations, the F value
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for the different means between the programs is unusually close to zero and
is significantly smaller than would be expected merely by chance, the p-value
associated with this factor is unusually close to 1, (1 − p = .038). This situation
should warrant further investigation. Based on the small F -value Tukey’s test
for non-additivity was performed. The F value for Tukey’s test was 0.42, which
does not exceed the table value of F.01,1,7 = 12.25. Therefore, there is insufficient
evidence, based on Tukey’s test for non-additivity, to conclude that interaction
effects exist. Interaction plots were also constructed and are presented below in
Figure 1.

Figure 1: Interaction plot of the test scores data given in Table 1

The plots in Figure 1 indicate that interactions may be present since the
lines cross, especially with respect to program 1. Based on those plots, the
analyst decides to redesign the study prior to the next offering of the GMAT as
a two factor crossed design with replication. Ten students from each major are
randomly assigned with two to each program. Again, all of the students sit for
the GMAT at the first offering after completing their respective programs. The
resulting GMAT scores are summarized in Table 2:
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Table 2: GMAT scores of students classified by college and exam preparation
program – two observations per cell

One-hour One-day One-week 4-weeks 10-weeks

College of 500 440 610 530 520
Business 470 480 570 580 570

College of 530 560 550 600 550
Engineering 490 520 590 590 580

College of Arts & 510 460 410 420 440
Social Sciences 530 430 490 470 520

In this model we are able to independently measure interaction. Referring to
the data in Table 2, an analysis of variance gave the following results:

Analysis of variance for GMAT2

Source DF SS MS F p

Major 2 40220 20110 19.15 0.000
Program 4 12980 3245 3.09 0.048
Interaction 8 26480 3310 3.15 0.026
Error 15 15750 1050
Total 29 95430

Note that, in the above ANOVA table, both programs and the interaction
effect are significant at an α level of .05. Getting a significantly small F -value in-
dicated a possible problem with the first study. While the second study indicated
a significant interaction effect, that may or may not have caused the significantly
small F -ratio in the first study.

4.2 Omitted factors

The previous example concentrated on the possibility of the presence of an
interaction effect’s contributing to a significantly small F -ratio. It cannot be
stated that an interaction effect is definitely the problem in that example since
factors such as grade point average (GPA), amount of work experience and/or
motivation were not considered in either study. Any time a factor is inadvertently
omitted from the model there is the possibility of obtaining unusually small F -
values. To illustrate the rationale behind this concept a one- factor model is
compared to a two-factor model. The models are given in Equations (4.3) and
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(4.4).

yij = µ + αj + εij (4.3)
yijk = µ + αj + βi + αβij + εijk (4.4)

If the model in Equation (4.3) is correct then MSA/MSE is expected to
be close to 1.0 if H0 is true and large if it is not since, assuming a fixed effect,
E(MSA) = σ2 +

∑
α2

j and E(MSE) = σ2. If a factor was omitted from the
model then, as is illustrated in Equation (4.4), the sums of squares (SS) for both
it and its interaction with the other factor will be included in the error term.
If the missing factor(s) has a significant effect then the error mean square can
be greatly inflated, resulting in significantly small F -ratios. The extension to
higher order models is straightforward since the SS for the missing factor(s) and
its (their) interactions, both first and higher order, with each other and with all
terms specified in the model will be included in the SSE.

Example 2: Because of the high cost of hospital confinement and the need to
free facilities, the average hospital stay for women giving birth has been dimin-
ishing. A study was undertaken to determine whether the average confinement
was the same for four area hospitals. The data in Table 3 represent the number
of days of hospital stay based on time between check-in and check-out (Obtained
in a modified form from Meek, Taylor, Dunning and Klafehn (1987, p.375).

Table 3: Number of days spent by women in four hospitals after giving birth

Hospitals

Edgewood Lincoln Charity General

9.5 9.7 7.1 8.7
7.9 9.4 8.4 9.0
9.1 8.4 7.9 8.9
2.7 2.6 2.5 2.1
3.2 2.7 2.0 3.2
2.0 2.4 2.3 2.5
3.4 3.4 4.0 3.4
3.5 3.4 2.9 3.6
3.5 3.0 3.0 3.8

If a one way analysis of variance is run, using the following model: yij =
µ + αj + εij , where αj = Hospitals, the following results are obtained:
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Analysis of variance

Source DF SS MS F p

Hospitals 3 2.01 0.67 0.08 0.971
Error 32 272.41 8.51
Total 35 274.42

Note that the calculated F value is very small and the p-value is very close
to 1, or 1 − p = .029 which is less than .05. This is an unusually small value for
the F statistic. As discussed above, this can happen when an important factor(s)
is (are) left out of the model. If we plot the data with box plots, we see the
following results in Figure 2.
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Charity Edgewood General Lincoln

Hospital

Figure 2: Box Plot of data by hospitals

The box plots lead to two important observations. First, the variation may
be the same in each of the populations, and second, the data points within each
population appear to be in two widely separated clumps. ANOVA F tests re-
quire that the population variances be homogeneous and that the populations
be normally distributed. The null hypothesis of equal variances can be tested
using Hartley’s F max test which compares sample variances from several pop-
ulations using the ratio of the largest sample variance to the smallest sample
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variance. Here it is applied to the two hospitals with the largest and smallest
sample variances. The F -ratios are

Fmax(calc) =
σ2
largest

σ2
smallest

=
9.9925
6.7077

= 1.49

Fmax(table) = Fmax c,n̄−1 = Fmax 48 = 7.18,

where c = # of grpups amd n̄−1 = [mean # of observations (rounded down) per
group] − 1 with α = 0.05. Since 1.49 < 7.18, the assumption of homogeneity of
variance does not appear to be violated. Though the sample sizes are somewhat
small we can look at the distributions for the individual hospitals, shown in Figure
3 as histograms.

Charity Edgewood General Lincoln

0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 9 10

Figure 3: Histogram: Distribution of length of stay for women

Table 4: Number of days spent by women after giving birth by hospital and
type of birth

Hospitals

Type of Birth Edgewood Lincoln Charity General

Caesarian 9.5 9.7 7.1 8.7
7.9 9.4 8.4 9.0
9.1 8.4 7.9 8.9

Natural 2.7 2.6 2.5 2.1
3.2 2.7 2.0 3.2
2.0 2.4 2.3 2.5

Medically 3.4 3.4 4.0 3.4
Assisted 3.5 3.4 2.9 3.6

3.5 3.0 3.0 3.8
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Based on Figure 3 normal distributions for the populations may be question-
able. There would seem to be at least two processes involved in the distributions.
That is, other, possibly significant, factors appear to be present.

In this example, the factor that was left out was the type of birth. Fortunately,
when the data were collected three observations each from four different hospitals
and three different types of birth (Caesarian, Natural and Medically Assisted)
were obtained. The data are reorganized in Table 4.

Including type of birth as a factor results in the following model as stated in
Equation (4.4) and repeated below:

yijk = µ + αj + βi + αβij + εijk,

where αj = Hospitals and βi = Type of birth. The ANOVA results for the
two-factor design are:

Analysis of variance

Source DF SS MS F p

Birth 2 265.071 132.535 560.67 0.000
Hospital 3 2.010 0.670 2.83 0.060
Interaction 6 1.669 0.278 1.18 0.351
Error 24 5.673 0.236
Total 35 274.423

With type of birth included as a factor, there are no significantly small F ratios.
Including type of birth as a factor resulted in the difference between hospitals
becoming significant at a .10 level of significance (p-value = .06). In this situ-
ation the original model was incorrectly specified. Including type of birth and
interaction in the model resulted in a significant reduction in the MSE.

4.3 Non-linearity or lack of fit

In this case the model in question is a regression model. Suppose that the
appropriate model is actually as stated in Equation(4.5) or Equation (4.6).

yi = α + β1xi + β2xi2 + εi (4.5)
yi = α + β1xi + β2xi2 + β3x

3
i + εi (4.6)

If a straight-line model is fitted by mistake then the residual sum of squares will
include both the error sum of squares and the squared distances between corre-
sponding points on the straight line and on the correct model. Again, the term
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used for the MSE becomes larger than it should and may result in significantly
small F -values. If the experimenter suspects that more terms should be included
in the model and builds in replication at some of the x-values then a formal test
for lack of fit can be done. Without replication, a formal test is not possible,
though one may make a subjective evaluation based on a scatterplot of the data.
A significantly small F -ratio should lead one to consider the possibility of a lack
of fit.

Example 3: A company manufacturing VHS movie tapes is interested in deter-
mining the forecasted demand for the tapes. The analyst uses straight-line linear
regression to predict demand. The data are given in Table 5:

Table 5: Demand for VHS tapes by year

Time period (years) Sales of VHS tapes in millions of units

1995 (1) 3.1
1996 (2) 4.6
1997 (3) 5.2
1998 (4) 6.7
1999 (5) 7.1
2000 (6) 7.6
2001 (7) 5.8
2002 (8) 5.3
2003 (9) 4.5
2004 (10) 3.3

Analyzing these data using simple linear regression results in the following
output with

Y = Sale of VHS tapes (in millions),
X = time period (years).

The regression equation is

Y = 5.34 − 0.004x.

Predictor Coef StDev t p

Constant 5.340 1.099 4.86 0.001
Time (X) -0.0036 0.1772 -0.02 0.984

S = 1.609, R2 = 0.0%, R2(adjusted = 0.0%
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Analysis of variance

Source DF SS MS F p

Regression 1 0.001 0.001 0.00 .984
Residual Error 8 20.715 2.589
Total 9 20.716
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Figure 4: Graph of the residuals for the VHS tapes sales data

Figure 5: Normal probability plot of the VHS tape sales data
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Note that, the F value is .00 and the p-value is very large, .984, giving 1−p =
.016. Lack of a significantly large F -value indicates a poor fit of the simple linear
regression model, while the extremely small value for F suggests something other
than chance is present. A graph of the residuals shown in Figure 4 indicates lack
of fit. A graph of the residuals or a scatter plot may indicate lack of fit but this
is not a formal test.

The normal probability plot, shown in Figure 5, gives no indication of non-
normality. There might be possible positive autocorrelation, however, we could
not employ the Durbin-Watson statistic to check for autocorrelation due to too
small of a sample size.

Fitting a quadratic model based on equation (4.1), where

yi = α + β1xi + β2x
2
i + εi

gave the following results.
The regression equation is:

Demand = 1.16 + 2.09X − 0.190X2

Predictor Coef Stand Deviation t p

Constant 1.1567 0.5665 2.04 0.080
Time 2.0880 0.2366 8.83 0.000
Time2 -0.19015 0.02096 -9.07 0.000

S = 0.4816, R2 = 92.2%, R2(adj) = 89.9%

Analysis of variance

Source DF SS MS F p

Regression 2 19.0923 9.5462 41.15 0.000
Residual Error 7 1.6237 0.2320
Total 9 20.7160

The model has a highly significant F -ratio (41.15) with a p-value of 0.000.
In addition, looking at the t-values for individual terms it can be seen that both
the linear and quadratic terms are highly significant. By itself the linear term
had an unusually small F -value. When a cubic term is added to the model, its
coefficient is insignificant and the added term actually results in an increase in
the MSE; i.e., a loss of precision in predictive accuracy.

The situations cited above only exemplify three of the possible causes that
might give rise to significantly small F -ratios. The violation of other assumptions
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and/or falsification of data may also lead to inflated mean square errors, resulting
in unusually small F -ratios and, hence a red flag that something may be wrong.
The point being made in this paper is that any unusual value is suspect and
warrants investigation.

5. Summary

Significantly small values for F -ratios appear to have been ignored in the lit-
erature with respect to the signals that they may provide regarding the validity of
underlying assumptions for the test procedures used in evaluating linear models.
If the model is correct and all assumptions are satisfied then the ratio of the two
mean squares should be either near 1.0 or greater than 1.0. The value is never
expected to be close to 0.0. If the value is near 0.0 and is significant it should be
treated as a red flag, indicating potential problems with the design or analysis,
and investigated just as any unusual occurrence in statistical quality control de-
mands explanation. Possible causes for values near zero have been shown to be
non-additivity, an omitted factor(s) in the model and/or lack of fit. Other pos-
sible causes that were not discussed in the paper are violations of distributional
assumptions, multi-collinearity in regression and falsification of data. Unusually
small values may be simply chance occurrences but all other possibilities should
be eliminated before that conclusion is reached.
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