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Abstract: As a useful alternative to the Cox proportional hazards model, the
linear regression survival model assumes a linear relationship between the
covariates and a known monotone transformation, for example logarithm,
of an event time of interest. In this article, we study the linear regression
survival model with right censored survival data, when high-dimensional
microarray measurements are present. Such data may arise in studies in-
vestigating the statistical influence of molecular features on survival risk.
We propose using the principal component regression (PCR) technique for
model reduction based on the weight least squared Stute estimate. Com-
pared with other model reduction techniques, the PCR approach is relatively
insensitive to the number of covariates and hence suitable for high dimen-
sional microarray data. Component selection based on the nonparametric
bootstrap, and model evaluation using the time-dependent ROC (receiver
operating characteristic) technique are investigated. We demonstrate the
proposed approach with datasets from two microarray gene expression pro-
filing studies of lymphoma cancers.

Key words: Linear regression model, microarray, principal component re-
gression, survival analysis.

1. Introduction

Microarray technologies that are capable of monitoring tens of thousands of
gene expression profiles simultaneously have been extensively used in medical
and biological studies. Our research is partly motivated by biomedical experi-
ments like the well known gene expression profiling study for diffuse large B-cell
lymphoma (DLBCL) reported by Alizadeh et al. (2000), where gene expression
profiles of 4026 clones and survival information for 40 patients are recorded. One
main goal of the DLBCL study is to identify the statistical influence of tumor
molecular features on survival risk. A better understanding of the molecular bi-
ology that underlies variations of phenotype among subjects may provide a more
accurate and rational method of risk stratification to guide treatment and may
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suggest new therapeutic approaches as well. Classification and prediction of oc-
currence of cancer using microarray data have been shown to be successful. See
Alon et al. (1999), Golub et al. (1999) and Garber et al. (2001) among many
others for reference. Due to presence of censoring and usage of more complicated
semiparametric or nonparametric models, survival analysis using microarray data
has been less investigated. It is thus of special interest to develop sound statistical
methodologies that can effectively use high dimensional microarray measurements
in survival analysis.

Recent studies of right censored survival data with high dimensional microar-
ray measurements include, but are not limited to, the following. An ad hoc
approach suggested by Alizadeh et al. (2000) with microarray data is to clus-
ter genes first, and then use the within cluster averages of the gene expression
levels in the Cox model. Another well developed clustering based algorithm is
the gene harvesting procedure of Hastie et al. (2001). Nguyen and Rocke (2002)
apply the standard partial least squares (PLS) method to survival data and use
the resulting PLS components in the Cox model. Li and Luan (2003) develop a
penalized estimation procedure for the Cox model using kernels, under the as-
sumption that the covariate effects are smooth functions of gene expression levels.
General penalization methods have also been developed for the Cox model (Fan
and Li, 2002). Empirical studies show that performances of different approaches
are data dependent, with no approach dominating the others.

Despite the extensive study of the Cox model and the additive risk model,
research on the linear regression survival model remains rare for right censored
survival data with high dimensional microarray measurements. The linear re-
gression model assumes a linear relationship between the covariates and a known
monotone transformation, for example logarithm, of a failure time of interest
(Buckley and James, 1979; Ying, 1993). Since the event time, instead of con-
ditional risk function, is modeled directly, the linear regression survival model
can be more interpretable under certain circumstances and more suitable for
prediction of survival time. See Wei (1992) for an illuminating discussion. In
this article, we propose using the PCR (principal component regression) tech-
nique for dimension reduction with the linear regression model. Properties of
PCR estimators have been extensively investigated for simple linear regressions
(Jolliffe, 1986; Kollo and Neudecker, 1993). Compared with other dimension
reduction techniques, the PCR estimators are computationally less sensitive to
the number of covariates, easier to compute using existing software even for high
dimensional data and their theoretical properties are more transparent. Hence
the PCR method can be more suitable for model reduction with high dimensional
microarray data.

The goal of this paper is to develop theoretically well-behaved and compu-
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tationally stable estimators for the linear regression model with right censored
survival data and microarray measurements. The article is organized as follows.
In section 2, we define the linear regression model and corresponding PCR esti-
mators. Inference and model evaluation are investigated in the same section. In
section 3, we present analysis of the Mantle cell lymphoma data and the Follicular
lymphoma data. Concluding remarks are in section 4.

2. Principal Component Regression in Linear Regression Survival
Model

2.1 Data steeing
Let Ti be the logarithm or a known monotone transformation of the failure

time and Xi a d-dimensional covariate vector for the ith subject in a random
sample of size n. Here Ti may denote the (transformed) time to death due to
cancer or time to occurrence of cancer. Since transformation of the original time
is used here, the “time” Ti may be negative. Xi denotes the gene expression
profiles. Without loss of generality, we assume the logarithm transformation of
the event time hereafter. The linear regression survival model assumes

Ti = α + X ′
iβ + εi, i = 1, . . . , n, (2.1)

where α is the intercept, β ∈ R
d is the regression coefficient and εi is the error

term. When Ti is subject to right censoring, we can only observe (Yi, δi,Xi)
with Yi = min{Ti, Ci}, where Ci is the logarithm of the censoring time and δi =
1{Ti≤Ci} is the censoring indicator. Suppose that a random sample (Yi, δi,Xi), i =
1, . . . , n with the same distribution as (Y,∆,X) is available.

The model (2.1) assumed here shares the same format as the AFT (accelerated
failure time) model in Buckley and James (1979). Two semiparametric methods
have received special attention for analyzing such model. One is the Buckley-
James estimator (Buckley and James, 1979) which adjusts censored observations
using the Kaplan-Meier estimator. The other is the rank based estimator which
is motivated by the score functions of the partial likelihood (Wei, Ying and Lin,
1990). However, the linear regression survival model has not been widely used
in practice, mainly due to the difficulties in computing the semiparametric esti-
mators of the aforementioned methods, even in situations when the number of
covariates is relatively small (Jin, Lin, Wei and Ying, 2003).

The Stute estimator (1999) uses the Kaplan-Meier weights to account for
censoring and the objective function has a simple least squares format. This
simple objective function makes PCR natural with the Stute estimator, as can
be seen in section 2.2. We note that this simplicity of the objective function
is not shared by the Buckley-James estimator and the rank based estimator for
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the linear regression survival model or the Cox model, which needs iterative
maximization of a weighted objective function.

The Stute approach can be summarized as follows. It is first assumed that
Xi are iid distributed. Let F̂n be the Kaplan-Meier estimator of the uncondi-
tional distribution function F of T . Following Stute (1999), F̂n can be written as
F̂n(y) =

∑n
i=1 wni1{Y(i) ≤ y}, where wni’s are the Kaplan-Meier weights defined

as

wn1 =
δ(1)

n
, and wni =

δ(i)

n − i + 1

i−1∏
j=1

(
n − j

n − j + 1

)δ(j)

, i = 2, . . . , n.

Here Y(1) ≤ · · · ≤ Y(n) are the order statistics of Yi’s and δ(1), . . . , δ(n) are the
associated censoring indicators. Similarly, let X(1), . . . ,X(n) be the associated
covariates of the ordered Yi’s. Stute (1999) proposed the weighted least squares
estimator (α̂, β̂) that minimizes M(α, β) = 1

2

∑n
i=1 wni(Y(i) −α−X ′

(i)β)2. Under

certain mild regularity conditions, Stute (1999) proved that (α̂, β̂) is
√

n consis-
tent and asymptotically normal as n → ∞ for a fixed d. Let

X̄wi =

∑n
i=1 wni X(i)∑n

i=1 wni
, Ȳwi =

∑n
i=1 wni Y(i)∑n

i=1 wni
. (2.2)

To obtain a simplified format of the objective function, we replace X(i) and Y(i)

in M(α, β) with

w
1/2
ni (X(i) − X̄wi) and w

1/2
ni (Y(i) − Ȳwi), (2.3)

respectively. For simplicity, we still use X(i) and Y(i) in M(α, β) to denote the
weighted centered values. Using the weighted centered values, the intercept esti-
mate α̂ is zero. So the weighted least squared objective function can be written
as

M(β) =
1
2

n∑
i=1

(Y(i) − X ′
(i)β)2. (2.4)

The objective function M(β) in (2.4) takes a least squared format, which is
easier to compute compared with the rank based estimates as in Wei, Ying and
Lin (1990). This simple form also motivates using the PCR for model reduction
with high dimensional microarray measurements. Compared with other model
reduction methods, the PCR approach only involves simple matrix calculations
and is relatively insensitive to the number of covariates. The PCR estimate is
also easy to obtain using existing software, even for the d >> n microarray data.
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2.2 PCR estimate

Consider the following principal component regression approach. Denote X

as the n× d matrix composed of X(i)s and Y as the length n vector composed of
Y(i)s. The estimate β̂ defined as the minimizer of (2.4) satisfies {X′

X}β̂ = X
′
Y.

Since X
′
X is a semi-positive-definite matrix, there exists a d dimensional square

matrix P satisfying

P ′
X
′
XP = M = diag(m1,m2, . . . ,mk, 0, . . . , 0) and PP ′ = Id. (2.5)

Here Id denotes the d-dimensional identity matrix. k is the rank of X
′
X. For

microarray data with n << d, we have k < d. P is composed of eigenvectors of
X
′
X, and the mis correspond to eigenvalues of X

′
X.

So we have P ′
X
′
XPP ′β̂ = P ′

X
′
Y and MP ′β̂ = P ′

X
′
Y. If we denote P ′β̂ = γ̂

and MG = diag(1/m1, . . . , 1/mk, 0, . . . , 0), it can be seen that one special solution
to the Stute estimate when n << d is γ̂ = MGP ′

X
′
Y and β̂ = P γ̂.

Empirical studies show for small to medium sample size cases, when d is com-
parable to or larger than n, some components of γ̂ can have estimated variances
several orders larger than the other components, which indicates unstable esti-
mates. This poses especially serious concerns for analysis of microarray data,
which usually have n < 100 and d ∼ 103 or more. This phenomenon motivates
using the PCR to yield more reliable estimators by excluding certain principal
components from the regression. This stability arises from the well known bias-
variance tradeoff, as has been noticed for linear regression by Jolliffe (1986).
Related discussions can also be found in Huang and Harrington (2004).

Denote S as the component-selection matrix with certain diagonal elements
equal to 1 and all other elements equal to 0. For example, if only the principal
components corresponding to the first p elements of γ̂ are selected, then S =
diag(Ip, 0), where Ip denotes the p-dimensional identity matrix. For now, we
assume the matrix S is known. Determination of S is postponed to section 2.3.
The PCR estimator can then be defined as γ̂pc = Sγ̂ and β̂pc = P γ̂pc.

Under mild regularity conditions, we can establish the asymptotic bias of the
PCR estimate β̂pc assuming finite d and n → ∞. It can also be shown that γ̂
is asymptotically normal distributed. The proof is omitted here and is available
upon request from the author. The asymptotic normality of γ̂, combined with the
nonparametric bootstrap proposed in section 2.3, can be used to determine the
component selection matrix S via hypothesis testing for significant components.

Principal component regression has been used in a wide range of biomedical
problems, including the analysis of microarray data in search of outliers genes as
well as the analysis of other types of expression data (Raychaudhuri et al. 2000).
When genes are used as variables, the PCR creates a set of principal gene compo-
nents, also known as super genes (Lan et al., 2003), that indicate the features of
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genes that best explain the experimental responses they produce. Compared with
penalization based methods where effects of single genes are identified, explana-
tion of the PCR estimates may not be straightforward. However, if prediction
and classification are of main interest, this limitation is not serious.

2.3 Principal component selection

We propose selecting principal components based on marginal significance of
γ̂. At this point, it is not clear how to develop plug-in estimate for the variance of
γ̂. As an alternative, we consider the following nonparametric bootstrap, which
was investigated in general by Efron and Tibshirani (1993).

First we sample n′ = 0.632n subjects from the n observations without re-
placement. Then the PCR estimates for the bootstrap samples are constructed
in the same manner as proposed in section 2.2 with the component selection ma-
trix S = Id. Denote the bootstrap PCR estimate of γ as γ̃. The sampling and
the estimation procedures are repeated many, for example 1000, times. Then
after proper scale adjustment, the sample variance of γ̃ provides a fair estimate
of the variance of γ̂. Marginal z−scores and p-values can then be obtained based
on the bootstrap variance estimates and the asymptotic normality of γ̂. We
use n′ = 0.632n since the expected number of distinct bootstrap observations
is about 0.632n. Computationally, it may be more efficient to use a smaller
bootstrap sample size.

The cutoff for identifying important principal components can be based on
the marginal p-values. Note that the dimension k of the principal components
set is limited by min(n, d). Empirical studies show that k can be much smaller
than min(n, d). In our study, we propose using the simple Bonferroni method
(Johnson and Wichern, 1998) to account for multiple comparison adjustment.
When the dimension of the principal components set is high, other techniques,
for example the false discovery rate method (Benjamini and Hochberg, 1995),
can be used.

When n >> d, it is expected that the validity of the nonparametric bootstrap
can be proved following the general statements in Politis and Romano (1994).
Simulation studies (not shown here) support the validity of the nonparametric
bootstrap when n >> d. It is still unclear at this point whether similar arguments
still hold under the current data setting with n << d. Limited empirical studies
show that the nonparametric bootstrap variance estimates are well-behaved.

2.4 Model evaluation

In standard survival analysis, the focus is to assess the association between
individual covariates with the censored survival outcome. However, when the
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sample size is smaller than or comparable to the number of covariates, this stan-
dard approach of assessing significance may not be appropriate, since its validity
typically relies on justifications assuming n >> d. Empirical studies show that
when n << d, it is usually hard to correctly estimate individual covariate effects
(Ghosh and Chinnaiyan, 2005). Our own simulation study for the linear regres-
sion survival model and the proposed approach supports Ghosh and Chinnaiyan’s
statement. In our study, the sample distribution of the PCR estimate β̂pc is not
clear. More importantly, the standard approach does not directly address the
problem of prediction performance. Unlike in standard survival analysis where
the association between survival outcome and covariates is of primary interest,
the main goal of our study is to predict survival risk based on the PCR esti-
mate. We consider the following approaches for assessing the performance of the
proposed approach.

Consider the linear risk scores X ′β̂pc. From model (2.1), we can see that
smaller linear risk scores indicate on average smaller event times and hence higher
survival risks. So a simple model evaluation procedure is as follows. First, we
generate two hypothetical risk groups based on the PCR risk scores X ′β̂pc in a
manner that there are equal number of subjects in the two risk groups. The
empirical survival functions are then computed for the two risk groups. Better
fitted models will yield more significantly different survival functions, and the
difference of the survival functions can be measured by the simple logrank statistic
and its corresponding p-value (Fleming and Harrington, 1991).

As an alternative, we also employ the time-dependent ROC (receiver operat-
ing characteristic) method for censored data approach. The time-dependent ROC
technique was firstly proposed by Heagerty et al. (2000) in the context of the
medical diagnosis and has been used as criteria for censored data regression with
microarray gene expression data (Gui and Li, 2005). The essential idea is to treat
the event indicator as binary outcome for each time point and evaluate the classi-
fication performance at each time using the standard ROC technique. In the ROC
approach, the AUC (area under curve) can be used as the evaluation/comparison
criteria and a larger AUC at time t indicates better predictability of the survival
outcome at time t as measured by sensitivity and specificity evaluated at time t.

3. Examples

3.1 Mantle cell lymphoma data
Rosenwald et al. (2003) reported a study using microarray expression analysis

of mantle cell lymphoma (MCL). One of the goals of this study is to discover gene
expression signatures that correlate with survival in MCL patients. Among 101
untreated patients with no history of previous lymphoma included in this study,
92 were classified as having MCL, based on established morphologic and
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Table 1: Mantle cell lymphoma data: the 30 genes with the largest absolute
values of β̂pc.

UNIQID Gene name β̂pc × 102

15981 Hs.524214, Myeloid leukemia factor 2 -2.568
16089 Hs.227817, BCL2-related protein A1 2.556
16541 Hs.30054, Coagulation factor V 2.765
16847 Hs.517717, Special AT-rich sequence binding protein 1 2.073
17322 Hs.428027, Pre-B-cell leukemia transcription factor 3 -1.900
17901 Hs.88218, Prepronociceptin -2.023
23972 Hs.431009, Zinc finger protein, multitype 2 1.734
24084 Hs.467769, Family with sequence similarity 49, mem-

ber A
-1.760

24379 Hs.120260, Immunoglobulin superfamily receptor 1.923
24880 Hs.459909, Transcribed locus 2.044
26192 Hs.530274, Aldolase B, fructose-bisphosphate 1.888
27067 – 1.742
27108 Hs.375108, CD24 antigen (small cell lung carcinoma

cluster 4)
2.305

27678 – 2.340
27831 Hs.87205, Lymphocyte antigen 64 homolog, radiopro-

tective 105kDa
-2.217

27838 Hs.87205, Lymphocyte antigen 64 homolog, radiopro-
tective 105kDa

-2.626

27839 Hs.87205, Lymphocyte antigen 64 homolog, radiopro-
tective 105kDa

-2.451

28216 Hs.484703, CD83 antigen (activated B lymphocytes) 1.858
28494 Hs.24529, CHK1 checkpoint homolog (S. pombe) -2.100
28638 Hs.227817, BCL2-related protein A1 2.197
29286 Hs.118651, Hematopoietically expressed homeobox -2.999
29791 – -1.829
30130 Hs.368433, Tumor protein D52 -2.608
30596 Hs.120260, Immunoglobulin superfamily receptor 1.881
31219 Hs.118351, Ubiquitin protein ligase E3C -2.415
31298 Hs.79347, Zinc finger protein 592 2.527
31837 Hs.436093, HLA-B associated transcript 2 -2.266
32249 Hs.494997, Complement component 5 -1.870
32874 Hs.363744, Transcribed locus 1.764
33831 Hs.370603, Tetratricopeptide repeat domain 7A -3.178

immunophenotypic criteria. Survival times of 64 patients were available and other
28 patients were censored. The median survival time was 2.8 years (range 0.02 to
14.05 years). Lymphochip DNA microarrays (Alizadeh et al., 2000) were used to
quantify mRNA expression in the lymphoma samples from the 92 patients. The
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gene expression data set that contains expression values of 8810 cDNA elements
is publicly available and can be downloaded from http://llmpp.nih.gov/MCL.
In Rosenwald et al. (2003), clustering based method is used for data analysis,
assuming the Cox model. The underlying assumption is that all genes within the
same cluster contribute additively and equally to the risk of survival, which is
not realistic. As an alternative, we assume the linear regression survival model
and apply the PCR approach to this dataset.

The PCR approach has no computational or methodological limitation on the
number of genes that can be used in the prediction of patients’ failure times. To
gain further stability, we pre-process the genes as follows: (1). Fill in missing
expression values with sample means; (2). Compute correlation coefficients of the
uncensored survival times with gene expressions; (3). For each gene, compute the
maximum and minimum of expression values across all the sample. Compute the
differences between the maximum and minimum values; (4). Select the genes
whose correlation with survival time is greater than 0.3 and the difference be-
tween the maximum and minimum is greater than 2.5. 364 genes pass the above
selection criterion. We make the log transformation to the observed time and
standardize the 364 selected genes to have mean 0 and variance 1. Similar gene
pro-precessing has been proposed and discussed in detail in Dudoit et al. (2002).
Since the number of the covariates (364) is larger than the sample size (92), Stute
weighted least squared estimate is not unique.

We consider applying the proposed PCR approach to the MCL data. Using
the nonparametric bootstrap and the Bonferroni adjustment, five principal com-
ponents are significant at the 0.05 level. The final PCR estimate is constructed
using those significant components only. In Table 1, we list the 30 genes with
the largest absolute values of β̂pc. Roughly speaking, since all genes have been
normalized to unit variance, the estimates are directly comparable: a larger es-
timated coefficient indicates stronger influence on survival. We also note that a
direct evaluation of the influence of individual genes is not available. This is the
inherent drawback associated with the PCR approach.

In Figure 1, we show the survival functions for the two risk groups defined
using the PCR estimate. We can see that the difference of the survival functions
are obvious (p-value< 0.001), which suggests that the proposed approach is effec-
tive in predicting survival risks based on gene expression profiles. We also show
in Figure 1 the AUC as a function of time. For comparison, we also consider a
simple linear regression survival model with the ten genes that are marginally
most significantly associated with the outcome as covariates. In this case, the
sample size n = 92 is greater than the number of covariates d = 10. So a simple
Stute estimate is available. We can see the PCR estimate has dominatingly larger
AUC, which suggests better model fitting.
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Figure 1: Mantle cell lymphoma data. Upper panel: survival function for the
two risk groups defined by the PCR estimate. Lower panel: time-dependent
ROC.

3.2 Follicular lymphoma data

Follicular lymphoma is the second most common form of non-Hodgkin’s lym-
phoma, accounting for about 22 percent of all cases. An experiment was con-
ducted to determine whether the length of survival among patients with follic-
ular lymphoma can be predicted by the gene-expression profiles of the tumors
at diagnosis. Fresh-frozen tumor-biopsy specimens and clinical data from 191
untreated patients who had received a diagnosis of follicular lymphoma between
1974 and 2001 were obtained. The median age at diagnosis was 51 years (range
23 to 81), and the median follow up time was 6.6 years (range less than 1.0 to
28.2). The median follow up time among patients alive at last follow up was
8.1 years. Eight records with missing survival information are excluded from the
downstream analysis. Detailed experimental protocol can be found in Dave et
al. (2004). The gene expression data and survival data can be downloaded from
http://content.nejm.org/cgi/content/abstract/351/21/2159.

RNA was examined for gene expression with the use of Affymetrix U133A
and U133B microarrays. A log 2 transformation was applied to the Affymetrix
measurements. We first filter the 44928 gene measurements with the following
criteria: (1). the max expression value of each gene across 191 samples must be
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Table 2: Follicular lymphoma data: the 30 genes with the largest absolute
values of β̂pc.

Gene ID Gene Description β̂pc × 102

222450 at transmembrane, prostate androgen induced RNA -1.199
225981 at chromosome 17 open reading frame 28 -1.606
227860 at carboxypeptidase X (M14 family) 1.206
228209 at CDNA FLJ38931 fis, clone NT2NE2013189 -1.868
228624 at hypothetical protein FLJ11155 -1.208
228844 at solute carrier family 13, member 5 1.242
231578 at guanylate binding protein 1, interferon-inducible,

67kDa
-1.262

231822 at hypothetical protein DKFZp547A023 -1.537
232018 at leukocyte receptor cluster (LRC) member 1 -1.375
232303 at zinc finger protein 608 -1.274
233834 at Nuclear receptor coactivator 2 -1.161
234836 at MRNA; cDNA DKFZp586G0822 1.330
235530 at Sequestosome 1 -1.216
236916 at Transcribed locus 1.637
237546 at Interleukin 19 -1.369
237744 at – -1.916
238605 at Nucleolar protein 4 -1.237
243430 at seizure related 6 homolog (mouse) -1.353
244407 at cytochrome P450, family 39, subfamily A, polypeptide

1
-1.262

244657 at Glucosidase, beta, acid 3 (cytosolic) 1.177
222545 s a chromosome 10 open reading frame 57 -1.775
229100 s a translocase of inner mitochondrial membrane 22 ho-

molog
1.343

234419 x a – -1.211
241748 x a DiGeorge syndrome critical region gene 14 -1.296
242938 s a forkhead box K2 -1.281
206641 at tumor necrosis factor receptor superfamily, member 17 1.493
213771 at interferon regulatory factor 2 binding protein 1 -1.457
215536 at major histocompatibility complex, class II 1.300
209547 s a splicing factor 4 -1.254
209863 s a tumor protein p73-like -1.740

greater than 9.186 (the median of the maximums of all probes). (2). the max-min
should be greater than 3.874 (the median of the max-min of all probes). After
steps (1) and (2), there are 6523 probes left. (3). Compute correlation coefficients
of the uncensored survival times with gene expressions. Select the genes whose
correlation with survival time is greater than 0.2. 729 genes pass this screening
process. We normalize genes across samples to have mean 0 and variance 1.
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We apply the proposed approach to the Follicular lymphoma data. Using
the proposed nonparametric bootstrap, six principal components are significant
at the 0.05 level with the Bonferroni adjustment. The 30 genes with the largest
absolute value of the estimated PCR coefficients are shown in Table 2.

Model evaluation plots are shown in Figure 2. The survival functions for the
two risk groups defined with the PCR estimate differ significantly with p-value
0.002. The AUC for the PCR is significantly larger than the AUC estimated with
the ten marginally most significant genes (measured by the associations with the
outcome) under the linear regression survival model.
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Figure 2: Follicular lymphoma data. Upper panel: survival function for the
two risk groups defined by the PCR estimate. Lower panel: time-dependent
ROC.

For the above two datasets, the principal components can be interpreted as
composite genes (or so called “super genes”). This has been discussed in Lan et
al. (2003) for uncensored data. It is also worth pointing out that interpretation
of individual gene effects (with the PCR approach) may be obscured because one
cannot identify individual effects. This limitation is the price to pay for a more
parsimonious model.
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4. Concluding Remarks

In this article, we investigate principal component regression with the lin-
ear regression survival model using high dimensional microarray measurements.
Compared with the extensively used Cox model and the additive risk model, the
linear regression model directly models the event times, is easy to interpret and
hence preferable in some cases. The Stute least squared type estimating equa-
tion makes its adaption to microarray studies feasible. The PCR approach is
one of the most natural with the least squared objective function. The compu-
tational cost involved is minimal compared with other estimation approaches.
The most serious concern with analyzing microarray data is the extremely high
dimensionality. In our study, this problem is partly solved by filtering genes first,
i.e, removing genes with little variations before the analysis. The main solution
is the computational simplicity inherent in the PCR method (Lan et al. 2003).

The selection of the principal components is based on the marginal significance
in this article. Other component selection techniques include selecting compo-
nents with large eigenvalues, the cross validation techniques in Jolliffe (1986),
and the mean squared error based selection in Hwang and Nettleton (2003). The
performance of different selection techniques is data dependent and a detailed
evaluation is beyond the scope of this article.

The linear regression survival model and the proposed PCR approach provide
a useful alternative to existing dimension reduction techniques based on Cox’s
model for right censored survival data with microarray measurements. It is of
interest to compare the relative efficacy of different models (for example the Cox
model, the additive model, and the linear regression model) and different model
selection techniques (for example, penalization methods like LASSO, PCR, and
PLS). Based on previous work on simple linear models, it is expected that the rel-
ative performances of the different models/dimension reduction methods are data
dependent, with no approach dominating the others. Comprehensive simulation
studies and data analysis will be needed to draw more definitive conclusions.
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