
Journal of Data Science 5(2007), 103-129

Statistical Analysis of Electricity Prices
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Abstract: The paper presents a statistical analysis of electricity spot prices
in a deregulated market in New South Wales, Australia, in the period 10
May, 1996 – 7 March, 1998. It is unusual that a single set of data, such
as this, allows one to consider a relatively systematic sequence of statistical
problems, each resulting in clear, although not always obvious, solutions.
This is the reason why these data and their analysis can be used as a rel-
atively good base for training in practical statistical analysis. Existing for-
merly as a report, the material has been used in lecture courses in several
universities in Australia and New Zealand.

Key words: Key words: Abrupt changes in market conditions, AR-processes,
change-point problem, daily average prices, deregulated electricity market,
mixtures of normal distributions, net prices on options, options on electricity
prices, periodic trends.

1. Introduction

There are many years since in New South Wales, Australia, the market on
electric energy was de-regulated: generators produce the electric energy and sell
it to consumers basically on demand and supply principle. In between genera-
tors and consumers there are distributing companies. These companies buy the
energy from generators and sell it “in retail” to us, customers.

The prices can change every half hour - as often as whether forecast is re-
leased. One can be surprised to see how sharp these changes can be – around
30% and 50% and more in just half an hour.

Although there is enough political interference, as it is unavoidable and nec-
essary when commodity of this importance is traded, the actual mechanism of
forming the eventual price from requested prices (so called “bid-stacks”) is very
interesting. It deserves separate description and analysis in game-theoretic terms.
However, we will not go into this in the present paper.
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Figure 1: Daily averaaages

In this paper we consider sequence of daily average prices, that is, averages of
48 half-hourly prices on 1 Mgw of electric energy, as a time series. The series starts
on 10 May 1996 and goes to 7 March 1998. The analysis was undertaken by the
request from one of leading Australian banks and one of the major distributing
companies in Sydney. So, although the sequence is relatively long the data now
is also old enough, they believe, to make the publication not sensitive from the
commercial point of view. The whole analysis was based only on the publicly
available data on prices.

At first we will consider the dynamics of daly average prices. However, the
distributor’s eventual interest was the accurate evaluations of the net prices on
various put options. Evaluation of net prices under “physical” and not trans-
formed “martingale” measure (cf. Musiela and Rutkovski, 2001;. or Shiryaev,
1999) is of very clear interest in this market.

The author was using this work as a material for practical training for students
in quantitative analysis of financial and economic data at UNSW and at VUW.
It is used for the same purpose in some other universities. We submit it now for
publication in a hope that it will be useful also for other students.

Once Antoine de Saint Exupery remarked that the best airplane is not the
one to which you can not add anything, but the one which you can not remove
anything from. The major difficulty for us in the present analysis was to follow
this principle. It would be very easy, and at times tempting, to resort to more
complicated models. But we tried not to allow ourselves to introduce any sort
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of complications, unless there was very clear reason and unless the complications
were unavoidable.

2. Daily Averages

The sequence of 667 average daily prices – daily averages for short – from 10
May 1996 until 7 March 1998, naturally forms a time series. The graph of these
averages is given on Figure 1.

It can be noticed that in the first bit the behaviour of daily averages is more
volatile than in the rest of the data, but near the end of data there are extremely
high outliers present. Perhaps, some further speculations of heuristic nature are
possible but without a formal probabilistic model they may be quite misleading.

Denote by X(t) the daily average price at the day t. The first basic questions
are

a. is X(t), t = 1, 2, . . . , n (n = 667 days in this study), a stationary time
series? and if not

b. does it have any systematic or periodic components?
c. with these components filtered out, what is the behaviour of the rest?
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Figure 2: Weekly cycle (1-Sunday, 7-Saturday)

The obvious periodic component of X(t) must be formed by weekly cycle of
human activity. Hence we first assume that an expected value EX(t) = m(t) of
daily average X(t) is a periodic function of t with period 7 days:

m(t) = m(t + 7)

An obvious estimator of m(t) is provided by average prices for all Mondays, all
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Tuesdays, etc., that is

m̂(t) =
1
�

�∑
k=0

X(t + 7k), for t = 1, 2, . . . , 7

and for all other t it is defined as a periodic function: m̂(t) = m̂(t + 7). Here �
is the number of weeks available. For weekdays Monday-Friday there are � = 95
weeks while for Saturday and Sunday there are � = 96 weeks. The graph of m̂ is
shown on Figure 2.

We see that m̂(t) is of extremely regular and clear behaviour, which certainly
suggests the same behaviour of m(t).

Remark 1. Further refinement in the estimation of weekly cycle is possible, if
necessary, although we did not do it here. Some of working days from 10 May
1996 to 7 March 1998 may actually be holidays which, most probably, followed
the pattern of a weekend. So, these days may be identified and used to estimate
m(1) (Sunday) and m(7) (Saturday) rather than m(t) at nominal weekday.
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Figure 3: Ŷ (t) = daily averages−weekday’s averages, linear regression and
change-point regression.

Let now Y (t) denote the process of residuals

Y (t) = X(t) − m(t).

Is Y (t), t = 1, 2, . . . , n, already a stationary process? To answer this question
consider estimated residuals

Ŷ (t) = X(t) − m̂(t).
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Apriori one could think that a seasonal periodic trend still can be present in
Ŷ (t), t = 1. . . . , n. One the other hand, with commodity like electric energy it is
not quite obvious what this periodic trend can be: if in cold seasons one needs
more energy for heating, in hot seasons one needs more energy for refrigeration
and cooling. Therefore, on the whole one can intuitively agree with no signs of
the seasonal trend in Ŷ (t), t = 1. . . . , n.

At the same time, in difference to X(t), the graph of Ŷ (t) (Figure 3) reveals
the presence of relatively sharp and quick change in the process of daily prices.
This change probably occurred around 360th day of observation which is 5 May
1997.

One may also think about downward linear regression for Ŷ (t) with conse-
quent heuristic perception of the market as the one of regular and steady “bear-
ish” tendency. In our view, however, the so called change-point regression should
work in this case better. In other words, we assume that an expected value of
Y (t) depends on t in the following way:

a(t) = EY (t) =
{

a1 for 1 ≤ t ≤ t0
a2 for t0 + 1 ≤ t ≤ n

As an estimator of the change-point one can adopt

t̂0 = 360 ,

or, rather, use the interval between t̂1 = 305 (10 March 1997) and t̂2 = 370
(14 May 1997)) as the “short” period of “sharp” changes – see below. For the
estimators of a1, and a2 we used partial averages

â1 =
1
t̂0

t̂0∑
t=1

Y (t), â2 =
1

n − t̂0

n∑
t=t̂0+1

Y (t).

The numerical values of â1 and â2 were

â1 = $4.13 and â2 = −$5.07.

The choice of the change-point regression, as opposed to linear trend, was
made based on visual impression and some analysis presented later in §4. To
some extent, the statements like this is a dangerous thing to make because if
one claims that there was a sharp and quick change in the market conditions one
should be able also to identify what caused or instigated such change. The author,
being an academic statistician, did not have any necessary knowledge to present
any such cause. However, later the specialists in distributing company confirmed
that in that period of time the new high voltage lines became operational between
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Victoria and New South Wales. Electricity generators in Victoria use brown
coals, which is cheap fuel. Hence the export possibilities for cheaper energy form
Victoria to New South Wales were increased, and that the prices quickly lowered.

So, around 5 May 1997 the prices dropped on average by $9.20.
Let now Z(t) denote further residuals:

Z(t) = Y (t) − a(t) = X(t) − m(t) − a(t)

and consider estimated Ẑ(t)’s as Ẑ(t) = Ŷ (t) − â(t).
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Figure 4: Graph of Z(t)’s with weekly components and change-point regression
filtered out

As the graph of Ẑ(t) suggests, the Z(t) is already a good candidate for being
modeled as a stationary time series. We consider this model in the next §2.

3. The Model for Z(t), t = 1, 2, . . . , n

We did not consider so far autoregression functions of X(t), t = 1, 2, . . . , n,
or of Y (t), t = 1, 2, . . . , n. In the presence of components m(t) and a(t), t =
1, 2, . . . , n, this will not be useful: the presence of systematic components will
essentially deform the picture presented by this autoregression function. In-
deed, as Figure 5 demonstrates, the sample autocorrelation function of X(t), t =
1, 2, . . . , n, denoted γ̂x, is much higher than that of Ẑ(t), denoted γ̂z. The exces-
sive manifestation of dependence in X(t)’s and certain periodic pattern is simply
consequence of the presence of periodic trend m(t) and the shift a(t).
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Figure 5: Empirical autocorrelation of daily averages X(t) and of Z(t)

Analysis of empirical autocorrelation function of Ẑ(t) suggests that Z(t) can
be reasonably assumed a stationary time series. Indeed, on Figure 6 empirical
autocorrelation function γ̂z(s) is shown for different starting points t, that is, for
different parts of the whole sequence: for t = 1 (the whole sequence), t = 200
(the part of sequence starting with 23 November 1996), t = 371 (starting with 11
May 1997), t = 400 (starting with 11 June, 1997) and t = 500 (starting with 20
September 1997). These empirical autocorrelations are quite close to each other
and follow identical pattern. We need, however, more specific model for Z(t)
than stationarity alone can suggest.

First of all we try autoregression step 1 models, or AR(1) in notations (see,
e.g., Box and Jenkins (1976), Chan (1993) for the theory of autoregressive pro-
cesses). According to this model

Z(t) = θZ(t − 1) + ε(t), t = 2, 3, . . . , n, (3.1)

where θ is a constant autoregression coefficient and ε(t), t = 2, 3, . . . , n, is a
sequence of independent and identically distributed random variables (i.i.d. se-
quence). These random variables are called “innovations” (of Z). Remark that
AR(1) does not specify the distribution of ε(t)’s – in principle, it can be any.
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Figure 6: Empirical autocorrelation functions of Z(t) starting at t =
1, 200, 371, 400 and 500

The model (3.1) specifies, however, autocorrelation function of Z(t): if (3.1)
is true then

Corr (Z(t), Z(t + s)) = γ1(s) = θs , s = 0, 1, 2, . . . (3.2)

The AR(1) model also implies that Z(t)’s have the following representation
through ε(t)’s

Z(t) =
t−2∑
j=0

θjε(t − j) + θt−1Z(1) (3.3)

One can try higher order autoregression models as well and we will consider
AR(2) model. According to this model

Z(t) = θ1Z(t − 1) + θ2Z(t − 2) + ε(t), t = 3, 4, . . . , n, (3.4)

where θ1 and θ2 are, again, autoregression coefficients and ε(t), t = 3, 4, . . . , n,
forms an innovation i.i.d. sequence. This model too specifies the autocorrelation
of Z(t) completely: if (3.3) is true then

γ2(1) = θ1/(1 − θ2)
γ2(2) = θ1γ2(1) + θ2

γ2(s) = θ1γ2(s − 1) + θ2γ2(s − 2), s = 3, 4, . . .
(3.5)

and these recursive formulae determine γ2(s) uniquely.
Let us choose now the value θ̂ of θ, which gives the best fit of γ1(s) of (3.2)

to the empirical autocorrelation function of Ẑ(t), t = 1, 2, . . . , n.
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We choose θ̂ = 0.471 and to what extent does γ̂1(s) = θ̂s agree with the
empirical autocorrelation function can be seen in Figure 7. This fit for the first
three values is quite good but for the rest part it seems perhaps not so good.
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Figure 7: Empirical autocorrelation of Z(t) and fitted AR(1) and AR(2)
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Figure 8: Empirical autocorrelation of Z(t) and s−α (long range dependence model)

Similarly we can choose values θ̂1 and θ̂2 of θ1 and θ2 such that they give the
best fit of (3.4) to the empirical autocorrelation of Ẑ(t). We choose these values
as θ̂1 = 0.464 and θ̂2 = 0.041. All three autocorrelation functions are shown on
Figure 7.

Several conclusions follow from what we have observed so far:
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1. The fit of AR(2)-model is not much better than that of AR(1)-model. The
value of coefficient θ̂2 = 0.041 is quite small. Hence there is very little
advantage, if any, in AR(2) model relative to more simple AR(1) model.
Therefore, autoregression models of order higher then 2, in our view, will
look artificial and unnecessary.

2. Both models do not provide very good approximation for the tail of em-
pirical autocorrelation γ̂z for s ≥ 4 though this makes very little influence
on what follows in 3. The tail of γ̂z looks more like a power function
s−α, and indeed the choice of α̂ = 1.2 provides reasonable approximation
for γ̂z. This may be an indication of very different nature of the process
Z(t), t = 1, . . . , n, since power autocorrelation function is characteristic for
the processes with so called long range dependence.
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Figure 9: Empirical autocorrelation of AR(1) – innovations

The modern theory of the processes with long range dependence is extremely
interesting and important (see, e.g., Beran (1994), Koul and Surgailis (2002),
Qian, L. (1998)). However, for the purposes of the present investigation and
description of marginal distribution of Z(t)’s and hence, of prices X(t) themselves,
it can be avoided.

3. Using AR(1) model with estimated θ̂ we construct very useful sequence of
the estimated innovations

ε̂(t) = Ẑ(t) − θ̂Ẑ(t − 1) , t = 2, 3, . . . , n.
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Empirical autocorrelation function γ̂ε of these innovations is now very close
to 0 throughout the whole sequence. Its first 10 values, γ̂ε(s), s = 1, 2, . . . , 10,
starting with different values of t, and namely with t = 1, 200, 371, 400, 500
are given on Figure 9. The luck of fit for s ≥ 4 of γ1 to γz makes here very
little difference.

Remark 2. Further refinement in reconstruction of AR(1) innovations is pos-
sible. One, however, would need to consider the outliers first. The presence
of outliers essentially influences the value of θ and variances of Z(t) and ε(t),
especially for t ≥ to.

4. Outliers

The prices which exceed certain high level η should be treated as “outliers”.
What is this high level? The choice of its value can be a subject of a statistical
theory and we could present it here. However, we believe that in the present case
we do not have as much a problem of how to define outliers - basically prices
above $80-$100 are already outliers - but more a problem of understanding what
is the influence of outliers on the whole picture and how do they change inference
concerning our ultimate object - determination of option prices.

The following Table 1 describes number of half-hourly intervals in the whole
data set when the price on 1 Mgw exceeds the indicated threshold level. For
example, there are 54 intervals when the price was over $100/Mgw.

Table 1: Number of spot prices exceeding the indicated threshold level

886 327 139 76 54 26 21 18 13 0

$40 $50 $65 $80 $100 $150 $200 $250 $300 $350

The number of outliers may not seem large. For example, 54 prices exceeding
$100 barrier is not a big number relative to total number of 32000 observations.
However, their influence is very noticeable.

There are several possible ways of treating outliers. We adopted the one when
an outlier is replaced by a portion of the threshold level. Actually, we replaced
an outlier by 1/3 of the nominal threshold level.

What we observed then can be summarized as follows:

1. The general structure of processes X(t), Z(t) and ε(t) as described in §§1-2
remains unchanged and correct for all values of threshold starting from as
small number as η = $80. This means that the main body of observations
essentially follows the models proposed above.
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2. The estimated values of the parameters, however, may now be quite dif-
ferent and depend on the level of threshold. This includes, in particular,
estimation of autoregression coefficient θ and variances σ2

z and σ2
ε of Z(t)

and ε(t).

3. For smaller threshold level both variances σ2
z and σ2

ε are getting smaller
quite significantly. At the same time the value of θ is getting considerably
larger. This latter means that main body of Z(t)’s has heuristically speak-
ing “stronger” dependence structure and outliers are masking it, to certain
extent.

The following Table 2 shows values of estimations θ̂ of autoregression coeffi-
cient and of both standard deviations σ̂z and σ̂ε calculated for the whole sequence
and for the part of the sequence after the change-point t̂0 = 370 (after 5 May
1997).

Table 2: Estimations of the autoregression coefficient θ and of the standard deviations
σz and σε

after change-point

Threshold θ̂ σ̂z σ̂ε θ̂ σ̂z σ̂ε

η = ∞∗ 0.47 $6.73 $5.93 0.36 $7.91 $7.30
η = $100 0.64 $5.03 $3.95 0.54 $3.80 $3.20
η = $80 0.65 $4.89 $3.74 0.57 $3.52 $2.87

∗ outlier unaltered.

Remark 3. Estimations shown in this table provide another indirect support
for application of AR(1) model for Z(t). According to this model equality

σz = σε/
√

1 − θ2 (4.1)

must be true. But, for example, in the case of η = $100 for the whole sequence
we have σ̂z = $5.03 while σ̂ε/

√
1 − θ̂2 = $5.11, and in the case of η = $80 for the

part of the sequence after change-point we have σ̂z = $3.52 while σ̂ε/
√

1 − θ̂2 =
$3.49. Even in the case of no truncation this relationship between variances seems
remarkably stable: we have σ̂ε = $5.93.3 and θ̂ = 0.47, so that σ̂ε/

√
1 − θ̂2 =

$6.72 while actually σ̂z = 6.83 so that the difference is only 10c. We believe this
is a good agreement with (6.1).

Another place where outliers influence the numerical values of the estimators
is the marginal distribution of Z(t) and ε(t). We will see that it is very reason-
able to assume that these distributions are normal (see §5). It is also clear that
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the form of corresponding histograms is not affected by outliers. However, the
values of estimated means and standard deviations are very much influenced by
outliers. Therefore, either we would have to use truncated data or estimate these
parameters not by their sample analogues but somewhat differently.

It would be, of course, very interesting to describe and model the whole pro-
cess of outliers in more detail. However, we did not undertake this description
here.

5. Change-point Problem: Detection of Abrupt Changes

The simplest formulation of the change-point problem is as follows. Let
ξ1, ξ2, . . . , ξn be a sequence of random variables, most often assumed indepen-
dent. According to the null hypothesis the random variables are all identically
distributed with some distribution F . Under the alternative hypothesis, however,
they are not identically distributed – there is a moment n0 such that for i > n0

distribution of ξi has changed to some other distribution G. In particular, ac-
cording to the null hypothesis expected value of all ξi is the same, say – some
µ1, but under change-point alternative the expected value of ξi after some n0

has changed to another quantity µ2. It is important to notice that under the
alternative the value n0 of a change-point is not specified and remains unknown.
The problem is to detect whether a change-point exists at all, that is, if changes
really occurred, and to estimate n0 and also µ1 and µ2 or F and G.

The literature on the change-point problem is very wide we refer to Brod-
ski and Darkhovski (2000) for modern presentation of the topic). The methods
available can be divided in two major groups – those designed for the quickest
detection of changes (see, e.g., Chow, Robbins, and Siegmund (1971)) and those
designed for so called posterior detection of changes (see, e.g., Brodski and Dark-
hovski (2000)). The former are based on the methods of sequential analysis while
the later are based on the so-called posterior detection approach. These methods
are mathematically different but have many features in common. To illustrate
the latter approach consider so called partial sum process (or cumulative sums,
or cusum process) based on ξi’s: let

Sk =
k∑

i=1

ξi , k = 1, 2, . . . , n,
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and let

Vk = Sk − k

n
Sn =

k∑
i=1

(ξi − ξ̄) (5.1)

where ξ̄ is sample average of ξ1, . . . , ξn. It is not difficult to see that under the
null hypothesis of no change expected value of Vk for all k is 0,

EVk = 0 , k = 1, 2, . . . , n.

Under alternative it is different: since

ESk =
{

kµ1, k = 1, 2, . . . , n0

n0µ1 + (k − n0)µ2, k = n0 + 1, . . . , n,

then

EVk =
{

k(µ1 − µ), k = 1, 2, . . . , n0

n0(µ1 − µ) + (k − n0)(µ2 − µ), k = n0 + 1, . . . , n;

where
µ =

n0

n
µ1 +

n − n0

n
µ2.

It is clear that if an average price after a change point n0 jumped up, µ1 < µ2,
then µ1−µ < 0 < µ2−µ and if it dropped down, µ1 > µ2, then µ1−µ > 0 > µ2−µ.
It is also clear that Vn = 0. Hence under alternative the graph of EVk is either

EVk

0 k

nn0
or

EVk

k

n0

0

n

Figure 10: Shift of Vk under the change point alternative

and max |EVk| is attained at the change-point n0, while the expected value of Sk

at the change-point n0 only bends. It is easier to estimate the point of maximum
of the shift then the point of a bend. Besides, the expected value of Vk depends
only on the difference µ1 − µ (since µ2 − µ = −(µ1 − µ)) and not on the “com-
mon level” µ, which is very convenient property. Hence to detect the presence of
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changes it is advantageous to use statistics based on Vk, k = 1, . . . , n, instead of
Sk, k = 1, . . . , n.

Below on Figure 11 we show the graph of Vk based on the whole period of
Y (t), t = 1, . . . , 667.
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Figure 11: Cusums (5.1): graph shows indirect support the for piece-wise stationarity

The picture on Figure 11 is strikingly similar to the graph of EVk above, and
presence of a change is absolutely obvious.

One could say that there is not just one single change-point t0 but rather
there is a short transition period between, approximately, t̂1 = 305 and t̂2 = 370.
Slightly better fit to EY (t) then the function a(t) of §1 is, therefore, possible.
This is true but we will not engage ourselves with these improvement here, how-
ever.

The commonly used test for the presence of change is based on Kolmogorov–
Smirnov statistic max |Vk|: if it exceeds certain high level the presence of the
change is accepted. However, what values of maxk |Vk| already indicate presence
of changes? To answer this question it is better to standardize Vk, k = 1, 2, . . . , n
and consider the process on [0, 1] defined as

un(t) =
1√
nsn

Vk,
k − 1

n
≤ t <

k

n
,

where s2
n is the sample variance of ξ1, . . . , ξn. If there is no change in expected val-

ued of our ξi-s, then, for large n, the distribution of the process un(t), 0 ≤ t ≤ 1,
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is close to the distribution of the standard Brownian bridge and therefore the dis-
tribution of, say, Kolmogorov–Smirnov statistic max0≤t≤1 |un(t)| is close to the
so-called Kolmogorov distribution (see, e.g., Shorack and Wellner (1986)). The
limit distributions of many other goodness of fit statistics from un(t), 0 ≤ t ≤ 1,
can also be found in the classical goodness of fit theory (cf., e.g., D’Agostino and
Stephens (1986)).

What is the power of change-point tests? What is the accuracy in estimation
of a change-point n0 and of the value of changes occurred? How small changes
can be detected? These and other questions also have exact answers in the sta-
tistical theory. For i.i.d. observations this theory, as we said, is well developed
and is implemented within advanced data bases in the real practice.

The reader may like to conduct simulation experiment with the change-point
present and see what would be the accuracy of the estimators â1, â2 and t̂0. Ac-
cording to the theory of the change-point detection, âk−ak = OP (1/

√
n), k = 1, 2,

while estimator of the change-point itself is much more accurate, t̂0 − to =
OP (1/n).

For more complex time-series, many important facts are also known – see, e.g.,
Berkes, Gombay, Horvath and Kokoszka (2004); Chan (1993); Horvath, Hškova,
Kokoszka and Steinbach, J. (2004); Qian (1998) and references therein. However,
the present case of AR(1) sequence can be easily transferred to the i.i.d.-case.
Indeed, if Y (t), t = 1, . . . , 667, form an AR(1) sequence with constant mean, that
is, if there is no abrupt change, then for the partial sums SY

k =
∑k

t=1 Y (t) we
obtain

SY
k = θSY

k−1 +
k∑

t=1

ε(t)

or

SY
k =

1
1 − θ

k∑
t=1

ε(t) − θ

1 − θ
Y (k).

Hence the normalized processes

uY
n (t) =

1√
nsY

n

V Y
k and uε

n(t) =
1√
nsε

n

V ε
k

are related as

uY
n (t) =

1
1 − θ

sε
n

sY
n

uε
n(t) + o(1/

√
n)
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If we recall that sε,2
n /sY,2

n ≈ 1 − θ̂2, then, eventually, we see that the process

1 − θ̂√
1 − θ̂2

√
nsY

n V Y
k = uε

n(t) + o(1/
√

n)

for large enough n behaves again as standard Brownian bridge. Hence, the asymp-
totic null distribution of many goodness of fit statistics from this process are
known and can be used.

Wider presentation of methods of change-point detection will, however, dis-
tract us from the main subject of the present report.

6. Marginal Distribution of AR(1)-innovations

As we remarked in 3, autoregression model does not specify or require any-
thing from the distribution of innovations ε(t)’s. However, as our initial data
X(t), t = 1, . . . , n, are formed as averages of 48 not very dependent summands,
one could expect normality in the distribution of its innovations. In Figure 12
we show histogram of estimated AR(1)-innovations ε̂(t) and for comparison, on
Figure 13, we show histogram of average daily prices X(t) themselves.

0

20

40

60

80

100

120

140

160

180

-1
17

8.
00

23
73

-9
78

.9
35

47
13

-7
79

.8
08

84
36

-5
80

.7
41

94
19

-3
81

.6
75

04
02

-1
82

.5
48

41
24

16
.5

18
48

93

21
5.

58
53

91

41
4.

71
20

18
8

61
3.

77
89

20
5

81
2.

84
58

22
2

10
11

.9
72

45

12
11

.0
39

35
2

14
10

.1
06

25
3

16
09

.2
32

88
1

18
08

.2
99

78
3

20
07

.3
66

68
4

22
06

.4
93

31
2

24
05

.5
60

21
4

M
or

e

Figure 12: Histogram of AR(1) – innovations, e(t), in scale of stand deviation.

Below it will become clear that this histogram should be close to a mixture of
normal distributions, but we think it is not easy to recognize any such mixture
behind the graph of Figure 13.
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Figure 13: Histogram of daily averages, X(t), in scale of stand deviation.

According to (3.3), the process Z(t) can be represented as a linear transfor-
mation of innovation process ε(t). After as small t as t = 5 or 6 the term θt−1Z(1)
becomes negligible and we will drop it. Hence we consider

Z(t) =
t−2∑
j=0

θjε(t − j) (6.1)

This represents Z as a so-called linear process (see, e.g., Box and Jenkins
(1976). For ε(t)’s independent and normal N(0, σε) we obtain that Z(t) also has
to be normal:

Z(t) ∼ N(0, σz) with σ2
z = σ2

ε/(1 − θ2). (6.2)

Histogram of Z(t) is shown on Figure 14. It is again of quite regular nature.
Indirectly this again supports assumptions of AR(1) nature of Z(t) and indepen-
dence of ε(t).

As soon as we can positively state that marginal distributions of ε(t)’s and
Z(t)’s are the normal ones we will be able to describe marginal distributions of
X(t)’s. And indeed histograms of Figure 12 and Figure 14. agree well with a
normal distributions N(µ, σ) with an expected value µ and standard deviation
σ. Note that these histograms are based on the full data, outliers included.
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Figure 14: Histogram of Z(t)’s in scale of stand deviation.

This explains the irregularities on the right hand tail of the histogram on Fig-
ure 14. In other words, without truncation of outliers the marginal distribution
of Z(t) is a mixture of normal distribution and the distribution of outliers. Hence
empirical variance σ̂2

z is an estimator of variance of this mixture and not of the
main normal component only. The variance of the latter is only about 43% of
the total variance σ2

z and is remarkably small: σ = $2.84.

So far all this may look consistent and logical. However, we will see in the
next that we are ready to fall into a very interesting trap.

7. Marginal Distribution of Daily Averages X(t)

If we agree with the model

X(t) = m(t) + a(t) + Z(t) , t = 1, 2, . . . , n,

where m(t) is (deterministic) periodic function and a(t) is (deterministic) step-
function with one jump, and if we also agree that the marginal distribution of
Z(t)’s is normal, we must conclude that the marginal distribution of X(t) is a
mixture of normal distributions. If, in particular, we consider X(t) for t > t̂0
only, we have to state that the marginal distribution of X(t) must be close to the
following mixture of normal distributions
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41
289

4∑
j=1

N(m(j) + a2, σz) +
42
289

7∑
j=5

N(m(j) + a2, σz) (7.1)

Indeed, for 368 < t ≤ 667 there are 41 Sundays, Mondays, Tuesdays and
Wednesdays and 42 Thursdays, Fridays and Saturdays. For the reader’s conve-
nience we recall the estimated values of the parameters (in $)

Table 3: *******Please add caption ***

m̂(1) m̂(2) m̂(3) m̂(4) m̂(5) m̂(6) m̂(7) â(2) σ̂z

16.60 19.90 20.56 20.78 19.81 19.01 17.52 −5.07 2.84

The next Figure 15 shows the histogram of X(t)’s along with approximation
(7.1).
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Figure 15: Histogram of X(t)’s after change-point and mixture (7.1) of Normal
distributions

The first reaction of the author of this paper on this Figure was strong disap-
pointment and the feeling that the whole harmonious and well-balanced theory
above falls apart. Indeed, the agreement was very poor.

It was only after detailed analysis that it became clear where the problem
lies. We will see that the model above is still basically correct apart from the
statement that marginal distribution of Z(t)’s is normal and that Z(t) is strictly
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stationary.

To detect this, one needs to do tedious and somewhat careful analysis of the
data. We do not want, however, to overload the present paper with all of details
of this analysis, and instead will present the basic final results.

These are the following ones:

1. The distributions of daily averages for each day of a week before and after
the change point agree with normal distribution. Most of the time the
agreement is good although sometimes it is on a border.

2. However, not only expected values of these distributions are different (this
was clear initially), but also the variances for different weekdays are differ-
ent. Variances after the change-point are, in general, smaller.

This implies that centered process Z(t) is not exactly stationary. Though it
still is a Gaussian process, the empirical distribution of Z(t)’s, all put together,
does not correspond to a Gaussian but to a mixture of 0-mean Gaussian distribu-
tions. Since variances of the admixtures are not dramatically far apart, for given
number of observations to distinguish such a mixture from normal distribution
statistically is extremely difficult.

3. Not simply variances are different for different days of a week, but the larger
variances correspond to the larger expected values.

For mixture of normal distributions with the same variance, taken with almost
equal weights, both left and right tails must have similar behavior. However, if
to higher expected values it corresponds also higher value of variance, the right
hand tail will become more flat and closer to 0. Exactly this is the case for the
histogram of X(t)’s.

4. Too abrupt left tail of this histogram is connected with certain truncation of
low prices and is of technical and not very important nature. Altogether the
left tail of the marginal distribution is unimportant for the option pricing
problem.

5. The estimates of variances we derived are very far from sample variances.
The use of these sample variances would be completely inadequate because
they are very strongly influenced by outliers.
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Also note that these variances and individual histograms (for each day of a
week) are not looking quite stable. It means that the number of 41 weeks of
observation is not quite enough and also that, perhaps, the market had not been
quite stabilized yet.

6. It is possible to assume variances for all working days equal with proba-
bly some reservation concerning Fridays, and variances for Saturdays and
Sundays also equal. But the latter are much smaller than the former (see
below).
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Figure 16: Histogram of X(t)’s after the change-point and mixture (6.2)

Now we are ready to suggest to approximate the marginal distribution of
X(t)’s by the following mixture of normal distributions

41
290

N(µ̂(1), σ̂0) +
41
290

[N(µ̂(2), σ̂1) + · · · + N(µ̂(4), σ̂1)]+

(6.2)

+
42
290

[N(µ̂(5), σ̂1) + N(µ̂(6), σ̂1)] +
42
290

N(µ̂(7), σ̂0)

where µ̂(j) is our estimator of average of the day j (j = 1− Sunday, j = 7−
Saturday), while σ̂0 and σ̂1 are our estimators for standard deviations of working
days and of weekends respectively.
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Table 4: *****Please add caption ***

µ̂(1) µ̂(2) µ̂(3) µ̂(4) µ̂(5) µ̂(6) µ̂(7) σ̂0 σ̂1

10.76 13.70 15.69 16.80 15.17 13.69 11.77 1.73 4.20

The histogram of X(t)’s along with approximation derived from (6.2) is shown
on Figure 16. It may look not much better than Figure 15 to some eye, but it
would be quite wrong impression.

Indeed, the next Figure 17, which shows empirical distribution function of
X(t), instead of histogram, along with approximating distribution function of
(6.2) exhibits very good agreement.
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Figure 17: Empirical distribution of X(t)’s and mixture (6.2) of normal distri-
butions

Remark 6. We are touching here very important question of how and in what
terms should we measure a goodness of approximation of the distribution of
X(t)’s. We will see in the next Section 7, that goodness of fit of distribution
function is more natural criteria than anything else and, may be, the only natu-
ral criteria if we are interested in accurate estimation of net prices on options.

8. Net Prices on Options

An average loss associated with an option on random price X with strike k
is equal to the expected value
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v(k) = E(X − k)+ =
∫ ∞

k
(x − k)f(x)dx (8.1)

where (X − k)+ denotes positive part of X − k and f(x) denotes the density of
the random variable X. Using integration by parts we can rewrite (8.1) as

v(k) =
∫ ∞

k
[1 − F (x)]dx (8.2)

which shows quite clearly that this loss is rather “smooth” functional of the dis-
tribution function F (x). It is also clear that the value of v(k) is just the net price
on the option under the “physical” measure.

The density function f(x), x ≥ 0, the distribution function F (x), x ≥ 0 and
the net price v(k), k ≥ 0 are all in one-to-one relationship to each other: if we
know one of them we also know two others.

Statistically, however, the problems of estimation of f(x), x ≥ 0 and F (x), x ≥
0 are very different. It is difficult to estimate f , estimators f̂n are typically un-
stable and large sample sizes are required. One of the most common density
estimators is a histogram. It is true that visually histograms can be very ap-
pealing. However, they are rather unstable and the way they look depends very
much, in particular, on the choice of intervals of grouping. Estimation Fn of F
is, in most cases, is straightforward and has very good statistical properties. As
the expression (8.2) suggests, we do not need really to estimate the density but
only need a good estimator of the distribution function. In our case, as in the
most of other cases, this will be an empirical distribution function Fn:

Fn(x) =
1
n

n∑
t=1

I{X(t)≤x} or 1 − Fn(x) =
1
n

n∑
t=1

I{X(t)≥x} (8.3)

In the previous section we have seen that this empirical distribution function
agrees well with a mixture of normal distributions. Hence, the integrals (8.2)
from this mixture should provide good statistical estimator of v(k).

This statement should be made with certain reservations, however. The rea-
son for this reservation lies in the fact that v(k), k ≥ 0, is still not a continuous
functional of F (x), x ≥ 0, that is, very small changes of F on the right tail may
change the values of v(k) quite substantially. In other words, the presence of out-
liers will have very small influence on empirical distribution function, but may
change the integral
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vn(k) =
∫ ∞

k
[1 − Fn(x)]dx

(
=

1
n

n∑
t=1

(X(t) − k)+
)

(8.4)

quite seriously.

Before we come to the last numerical illustration we want to make two re-
marks. The histogram of X(t)’s as we have seen in §6, is rather irregular in
shape. It was, to some extent, the matter of sport and of eventual justification of
the models and methods, that we undertake its approximation through simpler
distributions. It is also important as soon as we consider options on a weekly
average prices. However, having only options on daily averages in mind, it would
be possible to consider distributions for each day of a week separately.

If we consider sequence of a given weekday, say, sequence of Mondays, it
practically will be a sequence of i.i.d. random variables, because the daily average
prices 7 day apart are practically independent. If, however, Fn is based on i.i.d.
observations, then for all λ we know the probability

P{max
x

[F (x) − Fn(x)] ≤ λ} .

Hence we know the probability

P{1 − F (x) ≥ 1 − Fn(x) − λ, for all x > 0} .

Therefore, the function 1−Fn(x)−λ, truncated at 0, forms a confidence boundary
for 1 − F (x) for all x simultaneously. But then the integral∫ ∞

k
max[1 − Fn(x) − λ, 0]dx

gives the lower confidence boundary for v(k) for all k simultaneously. This is, of
course, a very convenient object to have.

We already know, that each distribution F , in its main body, can be approx-
imated by a normal distribution. But for the normal distribution the integral in
(8.1) can be explicitly calculated

v(k) = v(k, µ, σ) = σ2ϕ(k, µ, σ) + (µ − k)[1 − Φ(k, µ, σ)] (8.5)

where ϕ(k, µ, σ) and Φ(k, µ, σ) denote normal density and normal distribution
function with expected value µ and standard deviation σ respectively.

The last graph shows empirical vn(k) for Mondays, the days when the number
of outliers was small. The agreement between vn(k) and v(k, µ̂, σ̂) is quite good.
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Figure 18: Mondays: empirical net price vn(k) and its normal approximation
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