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Abstract: Spread of airborne plant diseases from a propagule source is
classically assessed by fitting a gradient curve to aggregated data coming
from field experiments. But, aggregating data decreases information about
processes involved in disease spread. To overcome this problem, individual
count data can be collected; it was done in the case of short-distance spread
of wheat brown rust. However, for such data, the gradient curve is a limited
model since heterogeneity of hosts is ignored and, consequently, overdisper-
sion occurs. So, we propose a parametric frailty model in which the frailties
represent propensities of hosts to be infected. The model is used to assess
dispersal of propagules and heterogeneity of hosts.

Key words: Botanical epidemiology, count data, frailty model, host hetero-
geneity, overdispersion, propagule dispersal.

1. Introduction

In botanical epidemiology, assessing spread of airborne diseases of plants is
of major concern (Aylor, 1990; Campbell and Madden, 1990; Fitt 1987; Mc-
Cartney and Fitt, 1998). It contributes to understand dynamic of epidemics
and, consequently, to assess disease impact on crop growth and crop yield. The
spreading process of diseases of interest can be described as follows. Propag-
ules are produced at a given location. Generally because of wind and/or rain,
they are released, transported and deposited on other areas (propagule dispersal
process). When conditions are conducive, some of the deposited propagules suc-
ceed in infecting hosts (host infection process). Disease spread is so the result
of both propagule dispersal and host infection processes. Propagule dispersal
is well studied, whereas host infection is often ignored because it depends on
hardly-observable host features influencing propensities of hosts to be infected.
For the brown rust of wheat for example, the infection of a leaf by a spore de-
pends on the physiological state of the leaf (hydric status, nitrogen content) and
on the microclimate at the leaf scale (temperature, wetness) which are difficult
to measure in field experiments.
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To assess disease spread from a field experiment, a gradient curve is com-
monly fitted to aggregated data, i.e. disease measures done on sets of hosts
(Aylor, 1987; Fitt, 1987). The gradient curve describes the decreasing of the ex-
pected disease quantity, say y, with distance from the source, say r. The two main
gradient curves are the exponential and the power-law ones (y = a exp(−r/b) and
y = ar−b, respectively, where a and b are positive parameters). To better under-
stand processes involved in disease spread, the epidemiologist can use individual
data, i.e. disease measures done on individual hosts, instead of aggregated data.
However, in this case, the gradient curve is a limited model because it does not
include heterogeneity of hosts which can cause overdispersion of individual data
and can lead to misleading inference for the parameters of the gradient curve
(Hinde and Demétrio, 1998).

In this paper, we propose a frailty model to describe individual count data in
the disease spread context. A deterministic parametric function models the ex-
pected dispersal of propagules, and frailties are included to model heterogeneity
of hosts. Frailty models are usually developed in survival analysis (Nielsen, Gill,
Anderson and Sørensen, 1992), but our frailty model is adapted to the disease
spread context. In particular, the frailty is viewed as a weight in [0,1] character-
izing a host and, consequently, cannot obeys a classical frailty distribution, that
is the mathematically convenient gamma distribution or the log-normal distribu-
tion whose supports are R+. So, we use a parametric distribution in [0,1]. The
frailties, which are assumed to depend on biological characteristics at the leaf
scale, are assumed to be independent and identically distributed. Estimating the
model allows us to quantify the propagule dispersal process and the host infection
process.

The dataset we consider comes from a field experiment conducted to assess
short-distance spread of wheat brown rust; Section 2 details the experiment.
Section 3 presents the frailty model. Section 4 derives maximum likelihood es-
timators for the parameters; their uncertainties are assessed by using a normal
approximation. Model parameters are estimated in Section 5. Results are dis-
cussed in Section 6.

2. Field Experiment

In the experiment described in the next paragraph, short-distance spread of
wheat brown rust was measured to better understand local epidemic spread and
pathogen lesion distribution within a field crop (Robert, 2003). Short-distance
spread of wheat brown rust was already measured by Aylor (1987): he counted
lesions on sets of plants (aggregated data). In contrast, we counted lesions on
individual leaves (individual data). With such individual count data, we expected
(i) to get more accurate estimators for the parameters of the dispersal function,
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(ii) to quantify the variability of data due to leaf-scale variations of leaf conditions
and, consequently, (iii) to gain insight into disease spread.

1 2 3 4 5

0 m 30 m

2 m

R
ow

−4

+4

R
ow

+1

0

−1

−40 cm +40 cm

18.4 cm

Spore source

Figure 1: Field experiment. Top: experimental field; black-filled rectangles
are the 5 subexperiments taken into consideration. Bottom: sampling map
for each subexperiment; lesions are counted for all the leaves located in drawn
quadrats.

An experimental field of wheat was sown in October 2001. Its length was
30 m and it contained 9 rows 18.4 cm apart (row -4 to row +4 in the top panel of
figure 1. Within this field, 14 flag leaves, lined up along row 0 every two meters,
were inoculated with brown rust. The flag leaf of a wheat plant is the first leaf
below the spike. The inoculated flag leaves are called thereafter spore sources.
Exogenous infection (from non-artificial sources) was at most avoided by applying
a fungicide three weeks before the artificial inoculation. About two weeks after
the inoculation, daughter lesions appeared on leaves surrounding the sources.
The daugther lesions were counted for all the flag leaves in the neighborhood of 5
of the 14 spore sources (one lesion count per leaf). The 5 retained spore sources
were the ones around which the plant canopy was healthy before the experiment,
and homogeneous in plant density and nutritional state. Daugther lesions were
not counted around the 9 other spore sources. The neighborhood of a spore
source, thereafter called sampling zone, is defined by a rectangle with dimensions
80 cm (-40 cm to +40 cm) and 18.4*3 cm (rows -1, 0 and +1). It is drawn in
the bottom panel of figure 1. Leaf locations were not exactly measured : leaves
were located in small rectangular sets, called quadrats. The quadrats partition
the sampling zone in 36 parts which are drawn in the bottom panel of figure 1.
The farthest quadrats from the spore source are twice larger than the closest
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quadrats because the lesion count was expected to be almost constant between
20 and 30 cm and between 30 and 40 cm from the source.

Thus, the field experiment consists in 5 subexperiments denoted by index i
in {1, . . . , I = 5} (see top panel of figure 1. Observed variables are quadrats
{Aij ⊂ R2 : i = 1, . . . , I, j = 1, . . . , Ji} and lesion counts {Nijk : i = 1, . . . , I, j =
1, . . . , Ji, k = 1, . . . ,Kij}. Aij denotes the surface of quadrat j of subexperiment
i. For all i, the number of quadrats is Ji = 36. Nijk denotes the count of daughter
lesions on leaf k of quadrat j of subexperiment i.

3. The Frailty Model for Disease Spread

Lesions counts on individual leaves reflect heterogeneity of leaves. As men-
tioned in the introduction, gradient curves such as those used by Aylor (1987),
are unadapted to such individual count data. That is the reason why we pro-
pose in this section a frailty model which takes into account the heterogeneity
of leaves. Let N1, . . . , NK be random counts of lesions on K leaves under the
influence of a single spore source located at 0 in R2. Let X1, . . . ,XK denote leaf
locations in R2. We model the distribution of lesion counts as follows.

3.1 Infectious potential and dispersal function

Assuming that transports of spores are independent (McCartney, 1994) and
identically distributed, the infectious potential Sab is defined as the product be-
tween a quantity a > 0 of spores produced by the source, called source strength,
and a dispersal function fb with dispersal parameter b

Sab(x) = afb(x), ∀x ∈ R2.

The quantity Sab(x) is a measure of the risk of infection at x in R2, and the
function Sab represents an intensity of spores produced by the source.

Let D be the random location of deposition in R2 of a spore emitted at 0. fb

is its density function. We assume that

fb(x) =
1

2πb2
exp

(
−||x||

b

)
, ∀x ∈ R2,

where b > 0 and ||.|| is the R2-Euclidean distance. fb is chosen isotropic because
data do not provide evidence for anisotropic spread. Its exponential form is ob-
tained under the assumptions that spores move in radial half lines and that the
probability of deposition in the infinitesimal interval [r, r + dr] is constant what-
ever the already traveled distance r (Tufto, Engen and Hindar, 1997). Given D
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belongs to any radial half line, the conditional density function of D is exponen-
tial; this 1-dimensional dispersal function is widely used in botanical epidemiology
as a gradient curve (Aylor, 1990; McCartney and Fitt, 1998).

3.2 Leaf frailties

The propensity of leaf k (k = 1, . . . ,K) to be infected, which determines
the proportion of spores succeeding to infect leaf k, is influenced by unobserved
leaf features. Therefore, it is modeled as a random variable Zk, called leaf frailty,
which varies between 0 and 1. As leaf frailties are assumed to depend on biological
characteristics at the leaf scale, they are modeled as independent and identically
distributed random variables. As no biological assumption was available to choose
the density of the leaf frailties, we uses the following polynomial form

fcd(z) = {cz2 + dz + e(c, d)}2, 0 ≤ z ≤ 1,

where e(c, d) = −c/3−d/2+
√

∆(c, d)/2 and ∆(c, d) = −16c2/45−d2/3−2cd/3+4
to ensure

∫
[0,1] fcd = 1. Frailty parameters (c, d) are constrained by ∆(c, d) ≥ 0

(elliptical area). The polynomial form for fcd allows us to get a flexible density
with only two parameters, and to speed up the maximization of the log-likelihood
as an integration over [0,1] is replaced by a sum of 5 terms.

3.3 Conditional distribution of lesion counts

Lesion counts N1, . . . , NK conditional on frailties Z1, . . . , ZK and leaf loca-
tions X1, . . . ,XK are assumed to be independent and to obey Poisson distribu-
tions with intensities

ZkSab(Xk) = Zk
a

2πb2
exp

(
−||Xk||

b

)
, k = 1, . . . ,K.

4. Estimation Method

We are interested in estimating, for subexperiment i in {1, . . . , I}, the source
strength, the dispersal parameter and the frailty parameters, under the constraint
that leaf locations are restricted to quadrats. In the next subsections, we derive
maximum likelihood estimators for these parameters and assess their uncertainty
using a normal approximation.
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4.1 Likelihood function

Consider subexperiment i (i fixed in {1, . . . , I}). Observed variables are
{Nijk : j = 1, . . . , Ji, k = 1, . . . ,Kij} where Nijk is the count of lesions on leaf k
located in quadrat j with surface Aij ⊂ R2. Assume unobserved leaf locations
Xijk are independent and uniformly distributed in quadrats Aij . Then, as under
θ = (a, b, c, d)T variables Nijk|Xijk, Zijk are Poisson distributed with intensities
ZijkSab(Xijk), the probability that Nijk equals n in N given Aij is

pij
θ (n) =

∫ 1

0

[
1

|Aij |
∫

Aij

exp{−zSab(x)}{zSab(x)}n

n!
dx

]
fcd(z)dz.

Expanding fcd in monomials: fcd(z) =
∑4

m=0 γcd(m)zm, z ∈ [0, 1], the log-
likelihood

∑Ji
j=1

∑Kij

k=1 log{pij
θ (Nijk)} of θ for subexperiment i can be written, up

to a constant,

liKi
(θ) =

Ji∑
j=1

Kij∑
k=1

log

{
4∑

m=0

γcd(m)
(Nijk + m)!

Nijk!

∫
Aij

1 − FSab(x)(Nijk + m)
Sab(x)m+1

dx

}
,

(4.1)

where Fλ(u) = (1 − e−λu)Iu>0 and Ki =
∑Ji

j=1 Kij is the total number of leaves
for subexperiment i. Let θ̂i be the maximum likelihood estimator (MLE) of θ for
subexperiment i obtained by maximizing liKi

(·).

4.2 Estimator accuracy

To know the uncertainty of the estimator of θ, i.e. to get confidence intervals
for the parameters, the behavior of θ̂i must be assessed. We assess the behavior
of θ̂i by providing its asymptotic distribution when Ki tends to infinity. Since we
are interested in estimating disease spread within a well-identified bounded do-
main, we use fixed-domain asymptotic (Stein, 1999), that is the number of leaves
Ki is increased in a fixed spatial domain. The determination of the asymptotic
distribution of θ̂i is not standard because counts of lesions are independent but
non identically distributed (i.n.i.d.). However, by using theorems for i.n.i.d. vari-
ables (Hoadley, 1971; Philippou and Roussas, 1973), it can be shown that θ̂i is
consistent and, under θ, the limiting distribution of

√
Ki(θ̂i − θ) is a centered

normal distribution.
Table 1 provides, for different leaf densities, the coverage probabilities of the

95%-confidence intervals for parameters a, b, c and d, and of the 95%-confidence
ellipsoid for θ = (a, b, c, d)T obtained from the normal approximation of θ̂i. The
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leaf density is the number of leaves sampled in each small quadrat (the number
of leaves sampled in each large quadrat is two times the leaf density, see the
bottom panel of Figure 1. The leaf number is the total number of leaves per
subexperiment. The coverage probabilities are computed as follows. For each
leaf density, 100 subexperiments were simulated under the frailty model with pa-
rameters estimated for subexperiment 5 (see Table 1). For each subexperiment,
the confidence intervals and ellipsoid were computed. The coverage probability
for any parameter is the proportion of intervals which include the true value of
the parameter. The coverage probability for the vector of parameters is the pro-
portion of ellipsoids which include the true value of the vector. In the application,
the mean number of leaves per subexperiment is 275. For such a leaf number,
the coverage probabilities of the 95%-confidence intervals are between 90% and
95%, and the coverage probability of the 95%-confidence ellipsoid is about 70%.

The study of the coverage probabilities shows that conclusions based on the
confidence ellipsoid must be considered with care. However, in this paper, we
mainly use the confidence intervals (see Table 1) which are almost as accurate as
expected.

Table 1: Coverage probabilities (%) of the 95%-confidence intervals for pa-
rameters a, b, c and d, and of the 95%-confidence ellipsoid for the vector of
parameters θ = (a, b, c, d)T .

Leaf density Leaf number a b c d θ

3 144 89 93 94 90 56
5 240 89 96 93 89 68
10 480 88 94 91 90 72
20 960 92 97 96 94 85
30 1440 97 97 96 96 91

5. Results

5.1 Dataset and overdispersion

Figure 1 represents the field experiment together with the locations of the five
subexperiments. The number of leaves per subexperiment ranks from 256 to 294
(mean=275). For all the subexperiments, the percentage of infected leaves is high,
varying between 93.7% and 98.0%. The count of lesions per leaf is very variable,
ranking from 0 to 816. Left panel of Figure 2 summarizes the distributions
of the lesion count (y-axis) for the five subexperiments (x-axis). The y-axis is
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logarithmic. All the distributions are very skewed and show similar shapes even
if some statistics such as the median vary. The points above the top whiskers
correspond to leaves with a lot of lesions, that is leaves near the sources.

Right panel of Figure 2 shows overdispersion of data. It plots, for the variable
‘number of lesions per leaf’, the sample variance per quadrat versus the sample
mean per quadrat (stars) together with the estimated variance per quadrat versus
the estimated mean per quadrat (dots), where the estimated values are obtained
by fitting a model without frailty (Nijk|Xijk ∼ Poisson{Sab(Xijk)}) using a least
squares criterion. Each star or dot corresponds to one quadrat; there are 180 stars
and 180 dots (180 = 5 subexperiments × 36 quadrats). A 95%-confidence zone
under the estimated model without frailty is drawn (grey zone). It is computed
by performing 499 Monte-Carlo simulations under the estimated model. It is
the smallest zone which contains 95% of the points corresponding to simulated
variance per quadrat versus simulated mean per quadrat. It corresponds to the
region where neither overdispersion nor underdispersion are detected. Unlike the
line stating variance equals mean (which is also drawn), it takes into account
variations of lesion counts due to variations of the infectious potential within
each quadrat. Overdispersion appears clearly since the cloud of sample points
(stars) is over the simulated confidence zone (grey zone).

1 2 3 4 5

1
5

10
50

10
0

50
0

Subexperiment

Le
si

on
 c

ou
nt

 +
 1

*

*

*

**

*

*

*
*

**
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*
*

*

**

*

*

*

*
*

*

*

* *

*

*

*

*

**

*

*
*

*

*

*

*

*

*

*

*

** *
*

*

*

*

**
*

***
*

*
*

*

*

*
*

*

*

*
*

*

**

*

*

*

*

**
*

*
*

**

*

*

*
*

*

**

*
*

* *

*

**

*
*

*

*

*

*

*
*

*

*

*
*

*

*

*
*

*

*

*
*

*

**
*

*

*

*

*
*
*

*
*

*

*

*

*

*

*

**

*

*
**

*

*

*

*

** *

*

*

*

*

*

*

**

*

*
*

*

*

Mean

V
ar

ia
nc

e

*

*
*
**

*

*

*
*

**
*

*

*

*

*

*

*

*

*

*

*
**

*

*
*

*

*

*

*

* *

*

**
*

*

*

*
*

*

*

* *

*

*

*

*

**

*

*
*

*

*

*

*

*

*

*
*

****
*

*

*

**
*

***
*

*
*

*

*

*
*

*

*

*
*

*

**

*

*

*

*

**
*

*
*

**
*

*

*
*

*

**

*
*

* *

*

**

*
*

*

*

*

*

*
*

*

*
*

*
*

*

**
*

*

*
* *

**
*

*

*

*

*
*
*

*
*
*

*
*

*

*
*

**
*

*
**

*

*

*

*

** *

*

*

*

*

*
*

**

*

*
*

*
*

1 2 5 10 20 50 100 200

10
10

0
10

00
1e

+
04

1e
+

05

variance = mean

Figure 2: Data dispersion. Left: distribution per subexperiment of lesion
counts (plotted in log-scale); triangles are the sample means. Right: variance
per quadrat versus mean per quadrat both plotted in log-scale; stars for sample
statistics, dots for estimated statistics under the model without frailty, grey
zone for a 95%-confidence zone obtained under the model without frailty.
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5.2 Parameter estimation

Assuming the subexperiments are isolated, i.e. each spore source only con-
tributes to the infection of its surrounding leaves, the log-likelihood l(·) for the
five subexperiments is the sum

l(θi : i = 1, . . . , 5) =
5∑

i=1

liKi
(θi), (5.1)

where θi = (ai, bi, ci, di)T is the vector of parameters for subexperiment i, and
liKi

(·) is the log-likelihood for subexperiment i (Equation (4.1)). If the subexper-
iments do not share parameters then log-likelihoods liKi

(·), i = 1, . . . , 5, can be
separately maximized to estimate the parameters.

At first, we test if the subexperiments share some parameters by using three
maximum likelihood ratio tests whose null hypotheses are equality of the source
strengths (a1 = · · · = a5), equality of the dispersal parameters (b1 = · · · = b5),
and equality of the frailty parameters (c1 = · · · = c5 and d1 = · · · = d5). To
achieve a global significance level less than or equal to 5%, the significance level
for each of the three tests is 1.667% (Bonferroni procedure, Miller Jr., 1981).
The source strengths and the dispersal parameters cannot be accepted as equal
for the five subexperiments (p = 0.0004 and p = 0.0042, respectively), whereas
equality of the frailty parameters is not rejected (p = 0.0307, see also Figure 3).
The source strengths are variable because disease inoculations were carried out
by applying a mixture talc/spores on concerned leaves, and this method does not
allow to control the resulting count of lesions. The significant difference between
the dispersal parameters may be due to varying local conditions (local turbulence,
spore source orientation, unexpected spore sources). Remark that no clear rela-
tionship appears between the source strengths and the dispersal parameters. On
the other side, the subexperiments having been carried out simultaneously and
in homogeneous zones (see Section 2), same frailty distributions were expected
as long as they were related to crop features. In the following, we consider
that the subexperiments share the frailty parameters, that is c1 = · · · = c5 and
d1 = · · · = d5.

Parameter estimates are provided in Table 2 together with their confidence
intervals obtained from the normal approximation (see Subsection 4.2). The
dispersal parameters b for subexperiments 1 and 4 are high compared with the
others. In fact, unexpected spore sources are suspected in quadrat [row=0, dis-
tance=35cm] for subexperiment 1 and in quadrat [row=0, distance=12.5cm] for
subexperiment 4. Unexpected spore sources are unexpected lesions, appeared de-
spite of the preventive treatment (see Section 2), which induce daughter lesions
simultaneously with artificial spore sources. Daughter lesions due to artificial and
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Table 2: Parameter estimates (1st rows) together with their 95%-confidence
intervals (2nd rows). The estimates for c and d are the same for the 5 subex-
periments (c1 = · · · = c5 and d1 = · · · = d5 was not rejected) and are reported
only once in the table.

Subexperiment
1 2 3 4 5

a.10−6 1.77 0.89 0.89 2.01 1.31
(1.63,1.91) (0.74,1.03) (0.75,1.04) (1.87,2.15) (1.16,1.45)

b 19.3 17.0 13.9 19.0 14.5
(17.4,21.2) (15.1,18.9) (12.0,15.8) (17.1,20.9) (12.6,16.3)

c 8.00
(7.54,8.46)

d -10.29
(-10.71,-9.87)
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Figure 3: Estimated density function of the leaf frailty when frailty parameters
are shared by the five subexperiments (solid line) and when they are not shared
(dashed lines, one for each subexperiment).

unexpected sources are indistinguishable and, consequently, are counted together.
If there exists an unexpected source in the study domain, but not at the artificial
source location, then a higher estimate for the dispersal parameter is expected.
Rejection of equality of the dispersal parameters may be partly due to such events.
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Figure 3 presents estimated density functions of the leaf frailty when frailty
parameters are shared by the 5 subexperiments (solid line) or when they are
not (dashed lines). The slight differences between the dashed lines corroborate
that frailty parameters are not statistically different. The frailty density shows a
high peak around 0 corresponding to leaves with low propensities to be infected.
The solid line shows rebounds at z = 0.6 and z = 1 surely because the density
function fcd, as a constrained polynomial of degree 4, is not enough flexible to be,
for example, constant on [0.4,1]. However, the mass of segment [0.4,1] being less
than 0.05, the eventual mis-estimation of fcd on [0.4,1] is of minor importance.

5.3 Is overdispersion handled?

We compare the variability of sample data to the variability achieved under
the estimated frailty model. Figure 4 is built as the right plot of Figure 2 except
that the model which is estimated is the frailty model instead of the model with-
out frailty. Whereas the cloud of sample points is over the simulated confidence
zone in the right plot of Figure 2, it overlaps the simulated confidence zone in
Figure 4. Thus, overdispersion of individual data is handled by the frailty model.
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Figure 4: Variance per quadrat against mean per quadrat both plotted in log-
scale: stars for sample statistics, dots for estimated statistics under the frailty
model, grey zone for a 95%-confidence zone obtained under the frailty model.
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5.4 Individual data versus aggregated data

In this subsection we show that using individual data rather than aggregated
data allows to more accurately assess disease spread. As mentioned in the intro-
duction, assessing disease spread is commonly done in botanical epidemiology by
aggregating data and fitting a gradient curve (Aylor, 1987; Fitt et al., 1987). The
2D-version of the gradient curve is the conditional expectation of the number of
lesions N on a leaf, given the leaf location X, that is Eθ(N |X). Under our frailty
model

Eθ(N |X) = Ec,d(Z)afb(X)

=
aEc,d(Z)

2πb2
exp

(
−||X||

b

)

where Ec,d(Z) is the expected value of the frailty. In this model, Ec,d(Z) and
the source strength a are not identifiable and cannot be estimated; rather a′ =
aEc,d(Z), thereafter called intercept, is estimated. Consequently, we compared
the accuracy of the estimators of a′ and b obtained on one hand by the technique
based on aggregated data, and on the other by the technique developed in this
paper. For the latter technique, the estimator of a′ is obtained by plug-in the
estimators of a, c and d in aEc,d(Z).

Let us describe the technique of estimation of a′ and b based on aggre-
gated data. First, data are aggregated for each quadrat: for quadrat (i, j),
individual data Nij1, . . . , NijKij are pooled and replaced by their sample mean
N̄ij = K−1

ij

∑Kij

k=1 Nijk which is affected to the center, say xij , of the quadrat.
Second, the model

Eθ(N |X) =
a′

2πb2
exp

(
−||X||

b

)
is linearized

log Eθ(N |X) = log(a′) − log(2π) − 2 log(b) − ||X||
b

,

and fitted to aggregated data {(xij , N̄ij) : i = 1, . . . , I, j = 1, . . . , Ji} with the
ordinary least squares criterion.

We simulated 200 subexperiments under the frailty model with parameters
equal to the values estimated for subexperiment 5 (see Table 2). Then, for each
simulated subexperiment we computed the estimates of a′ and b using both tech-
niques of estimation. Figure 5 shows the histograms of the estimates obtained
for the intercept a′ (left) and for the dispersal parameter b (right) using the tech-
nique based on aggregated data (top) and using our technique (bottom). Note
that the x-axis scale is the same for both histograms drawn for a′ and for both
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Figure 5: Histograms of the estimates obtained for the intercept a′ (left) and
the dispersal parameter b (right) using the technique based on aggregated data
(top) and using our technique (bottom). Vertical lines: true values of parame-
ters a′ and b.

histograms drawn for b. The histograms of the estimates are more narrow with
our estimation technique than with the technique based on aggregated data. The
histograms for a′ and b are centred around the true value using our technique,
whereas only the histogram for b is centred around the true value using the
technique based on aggregated data. We computed the relative mean square
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errors (RMSE) for both parameters

RMSE(a′) =
∑200

m=1(â
′
m − a′0)2∑200

m=1(ã′m − a′0)2
≈ 0.23

RMSE(b) =
∑200

m=1(b̂m − b0)2∑200
m=1(b̃m − b0)2

≈ 0.13,

where â′m and b̂m denote estimates of a′ and b obtained with our technique applied
to simulation m, ã′m and b̃m denote estimates of a′ and b obtained with the
technique based on aggregated data applied to simulation m, and a′0 and b0

denote the true value of the parameters. The histograms and the values of the
RMSE shows that our estimation technique provide more accurate estimators
of the intercept a′ and the dispersal parameter b than the technique based on
aggregated data usually exploited in botanical epidemiology.

6. Discussion

To analyze a dataset dealing with spread of an airborne plant disease, we have
built a frailty model and estimated its parameters. In this model, a dispersal
function characterizes propagule dispersal, and frailties characterize propensities
of hosts to be infected by propagules.

6.1 Including frailties to assess the dispersal function

Assessing the dispersal function was one of the main aims of the experimental
study. The assessment was expected to be more accurate by counting lesions on
individual leaves (individual data) rather than counting lesions on set of plants
(aggregated data) as it is commonly done in botanical epidemiology. However,
overdispersion occurs with such individual count data. By taking into account
the heterogeneity of hosts, the frailty model allows us to handle the overdisper-
sion. Handling overdispersion reduces the risk of misleading inference for the
parameters of the dispersal function.

Note that it is common in botanical epidemiology to compare results obtained
when different forms for the gradient curve (or dispersal function) are used (Aylor,
1987; Fitt et al., 1987). In our model, the exponential form for the dispersal
function can be replaced by an other form. Consequently, if individual count
data are collected, the epidemiologist can still compare different forms for the
dispersal function by using our frailty model.
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6.2 Quantifying host heterogeneity through the frailty density

With our frailty model, not only do we estimate the dispersal function, we
also quantify host heterogeneity, i.e. we quantify the variability of propensities of
leaves to be infected. Let us explain why such a variability occurs. As a biotrophic
fungus, brown rust infects more easily vigorous leaves than non-vigorous leaves
(Rapilly, 1991). Consequently, differences in nutritional and hydric status among
leaves, which induce difference in vigor among leaves, result in differences in
propensities of leaves to be infected. Moreover, the success of propagules to in-
fect leaves depends on microclimatic conditions such as temperature and wetness
at the leaf scale (Campbell, 1990; Rapilly, 1991). Consequently, difference in
3D-geometry among leaves (size, shape, position), which induces differences in
microclimatic conditions among leaves, results on differences in propensities of
leaves to be infected. Propensity of a leaf to be infected is a notion which is
known and discussed in botanical epidemiology but, to our knowledge, has never
been quantified. In this paper, we have proposed a mean to quantify this notion
through the frailty density.
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