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Abstract: Data systems collecting information from different sources or
over long periods of time can receive multiple reports from the same indi-
vidual. An important example is public health surveillance systems that
monitor conditions with long natural histories. Several state-level systems
for surveillance of one such condition, the human immunodeficiency virus
(HIV), use codes composed of combinations of non-unique personal charac-
teristics such as birth date, soundex (a code based on last name), and sex
as patient identifiers. As a result, these systems cannot distinguish between
several different individuals having identical codes and a unique individual
erroneously represented several times. We applied results for occupancy
models to estimate the potential magnitude of duplicate case counting for
AIDS cases reported to the Centers for Disease Control and Prevention with
only non-unique partial personal identifiers. Occupancy models with equal
and unequal occupancy probabilities are considered. Unbiased estimators
for the numbers of true duplicates within and between case reporting areas
are provided. Formulas to calculate estimators’ variances are also provided.
These results can be applied to evaluating duplicate reporting in other data
systems that have no unique identifier for each individual.
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1. Introduction

Public health surveillance systems that monitor conditions with long natural
histories can receive multiple reports from different sources regarding the same
affected individual. For example, an individual may change his/her place of res-
idence and seek care for the disease under surveillance, likely resulting in case
reports from both places. If there is a unique identifier for each individual sub-
mitted with surveillance reports, then duplicate reports can be easily identified
and removed from the surveillance system. However, because of confidentiality
concerns, national surveillance systems do not collect information on variables
that can uniquely identify a person. For example, name and social security num-
ber may be reported to a state surveillance system as a part of routine reporting,
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but are not reported to CDC (Centers for Disease Control and Prevention) for
national HIV/AIDS surveillance purposes. Instead, an identifier is often created
based on several descriptors. This identifier will not be unique. When informa-
tion submitted to a surveillance system cannot uniquely identify an individual,
and the potential for duplicate reports being submitted to the system exists, the
system must use additional information to determine if cases with the same non-
unique identifiers represent the same person. For this discussion, we call reports
with the same partial personal identifiers “potential duplicates”. Among these,
we classify reports representing the same person as “true duplicates” and those
representing different persons as “non-duplicates”.

National AIDS surveillance data in the United States have the potential for
duplicate reporting and do not have unique identifiers to identify and remove
duplicate reports. Using the data available at the national level (cases reported
to CDC), one cannot determine whether cases with the same partial personal
identifiers represent the same person and therefore are true duplicates. However,
it is possible to estimate the expected number of non-duplicates from the potential
duplicates in a surveillance system based on the probability of matching on these
partial personal identifiers. Larsen (1994) considered this problem in a register
of HIV infected persons, using a method to estimate the number of distinct
individuals in the register based on the date of birth of each entry and classical
occupancy theory where each ball has the same chance of falling into any one of
the cells. While this method may be applicable as applied to the date of birth
in a given year, it cannot be applied to identifiers where individuals have an
unequal chance to take each possible value of the identifier, e.g., the soundex (a
code based on last name using a method of encryption, see Fenna, 1984).

Under the classical occupancy model where each ball has the same chance of
falling into each cell, the explicit formula for the expected number of empty cells
is available. However, the explicit formula for the variance associated with the
observed number of empty cells is not available. A similar situation occurs under
the model with unequal occupancy probabilities. Only approximate formulas for
the variance are available, see Chistyakov (1967), Holst(1971), and Sevastyanov
(1972). In this paper, we provide exact variance formulas for the observed number
of empty cells under the two occupancy models. They are presented in Sections
2 and 3, respectively. In Section 4, we consider a model with cells filled by
colored balls. All of these results can be applied to evaluating duplicates in a
data system. As an example, we use occupancy models to evaluate duplication in
AIDS case reporting. Results are presented in Section 5. Finally, some concerns
and recommendations are presented in the discussion section.
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2. Occupancy Model with Equal Occupancy Probabilities

Suppose that r balls are randomly distributed to n cells. Assume that each
ball has an equal chance of being distributed to each cell. Let Mr,n be the number
of cells remaining empty. According to occupancy theory (see Feller, 1968, page
102), the probability distribution of Mr,n is given by

Pr(Mr,n = m) =
(

n

m

) n−m∑
i=1

(−1)i
(
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i

)
(1 − (m + i)/n)r (2.1)
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)
is the binomial coefficient equal to the number of combinations of k

items selected from x items. Note that this formula is difficult to handle because
of the potential for rounding error. A useful recursive formula is available (see
Feller, 1968, page 60):

Pr(Mr+1,n = m) = Pr(Mr,n = m)
n − m

n
+ Pr(Mr,n = m + 1)
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n

(2.2)

Based on this recursive formula, one can derive the mean and variance of Mr,n.
An alternative but simpler way to derive the mean and variance is presented in
Section 3. As a special case of equations (3.1) and (3.6), the mean and variance
of Mr,n defined in (2.1) are:
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Since we are interested in the number of occupied cells and the number of balls
that exceed the minimum necessary to fill the occupied cells, we consider variables
Kr,n, the number of occupied cells, and Dr,n, the number of balls r, minus the
number of cells occupied by the r balls, Dr,n = r − Kr,n = r − (n − Mr,n).
Therefore, we have

E(Dr,n) = r − E(Kr,n) = r − [n − E(Mr,n)] (2.5)

and, given n and r,

V ar(Mr,n) = V ar(Kr,n) = V ar(Dr,n) (2.6)

If Kr,n is observed but r is unknown, then we can estimate r by solving
equation (2.3) for r:
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r̂ =
log(1 − K/n)
log(1 − 1/n)

(2.7)

Using the delta method, the variance of the above estimator is

V ar(r̂) ≈

(
1

(n − K) log(1 − 1/n)

)2

V ar(Kr,n) (2.8)

The above results can be applied to situations where cells do not all have the
same probability of being occupied, but can be divided into subgroups such that
within each subgroup each cell has an equal probability of being occupied by a
ball.

3. Occupancy Model with Unequal Occupancy Probabilities

In this section, we assume that the occupancy probabilities differ from cell to
cell. Let Mr,n denote the number of empty cells after r balls have been placed
into n cells with occupancy probabilities p1, . . . , pn, and

∑n
i=1 pi = 1. Then, the

expected number of empty cells can be expressed as

E(Mr,n) =
n∑

i=1

Pr(the i-th cell is empty)

=
n∑

i=1

(1 − pi)r (3.1)

Given m, the number of empty cells, we can estimate r, the number of balls,
by solving the above equation for r with E(Mr,n) = m.

Using the binomial expansion followed by interchanging the order of summa-
tion in (3.1), we have:

E(Mr,n) = n − r +
r∑

t=2

(−1)t
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where
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pt
i (3.3)

Therefore, the expected number of excess balls is given by

E(Dr,n) = r − [n − E(Mr,n)] =
r∑

t=2

(−1)t
(
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t

)
qt (3.4)
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Given s (2 ≤ s < r), the above formula can be approximated by

E(Dr,n) ≈
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)
qt (3.5)

The difference between (3.4) and (3.5) is the sum of smaller terms
∑r

t=s+1(−1)t(
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)
qt. Because of the cancelation of positive and negative terms, the difference

can be small. If
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qt decreases with t when t ≥ s, then the above approximation

has a maximum error less than
( r
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qs+1. Since qt+1 ≤ pmaxqt where pmax =

max{p1, . . . , pn}, it follows that
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)
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Similar to the occupancy model with equal occupancy probabilities, the vari-
ances of Mr,n,Kr,n and Dr,n are all the same for given n and r. The common
variance is:

V ar(Mr,n) =
n∑

i=1

(1 − pi)r[1 − (1 − pi)r]

+ 2
∑
i<j

{[1 − (pi + pj)]r − (1 − pi)r(1 − pj)r} (3.6)

This can be easily proved by considering the number of empty cells as a sum of
binary variables: Mr,n =

∑n
i=1 Xi, where Xi is the indicator variable for the i-th

cell after r balls have been distributed into the n cells. The probability that the
i-th cell is empty is given by Pr(Xi = 1) = (1−pi)r and the probability that two
cells, say the i-th and j-th cells, are empty is Pr(Xi = 1,Xj = 1) = [1−(pi+pj)]r.
Therefore, the variance and covariance of these binary variables are

V ar(Xi) = E(X2
i ) − [E(Xi)]2 = (1 − pi)r − (1 − pi)2r (3.7)

and

Cov(Xi,Xj) = E(XiXj)E(Xi)E(Xj) = [1− (pi + pj)]r − (1− pi)r(1− pj)r (3.8)

Combining (3.7) and (3.8) gives (3.6).
Three approximate formulas for the variance can be found in the literature.

The first approximation is given by Chistyakov (1967): if log(r/n) is bounded,
then Mr,n has an asymptotic normal distribution with variance

σ2
1 =

n∑
i=1

e−rpi(1 − e−rpi) − r

(
n∑

i=1

pie
−rpi

)2

(3.9)

This approximation is quite accurate. It is slightly greater than the true
variance and its maximum relative error is small:
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V ar(Mr,n) ≤ σ2
1 ≤ r

r − 1
V ar(Mr,n) (3.10)

Under the condition of equal occupancy probabilities, it can be shown that
for fixed r,

σ2
1

n→∞−→ r

r − 1
V ar(Mr,n) (3.11)

If n is large but r/n is small, Holst (1971) gave a simpler approximation for
the variance of Mr,n:

σ2
2 =

r2

2

n∑
i=1

p2
i (3.12)

If n is large, but r/n is not small or the expected number of empty cells is
small, Sevastyanov (1972) proved that Mr,n has an asymptotic Poisson distribu-
tion with a variance equal to its mean:

σ2
3 =

n∑
i=1

(1 − pi)r (3.13)

Figure 1:. Distributions of occupancy probabilities that are proportional to ia

for n = 1000.
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Table 1: True and approximate values of standard deviation of the number of
occupied cells for n = 1000.

r E(Kr,n) σ σ1 σ2 σ3 σ1/σ min(σ2, σ3)/σ

a = 0
2 2.0 0.03 0.04 0.04 31.59 1.413 1.415
5 5.0 0.10 0.11 0.11 31.54 1.117 1.121

10 10.0 0.21 0.22 0.22 31.46 1.053 1.062
50 48.8 1.06 1.07 1.12 30.84 1.009 1.052

100 95.2 2.05 2.06 2.24 30.08 1.004 1.091
500 393.6 7.40 7.40 11.18 24.62 1.000 1.512

1000 632.3 9.86 9.86 22.36 19.18 1.000 1.945
3000 950.3 6.31 6.31 67.08 7.05 1.001 1.117
5000 993.3 2.54 2.54 111.80 2.59 1.000 1.021

a = 1/2
2 2.0 0.03 0.05 0.05 31.59 1.413 1.415
5 5.0 0.11 0.12 0.12 31.54 1.117 1.122

10 10.0 0.22 0.23 0.24 31.47 1.053 1.063
50 48.6 1.12 1.13 1.19 30.84 1.008 1.056

100 94.6 2.15 2.16 2.37 30.09 1.004 1.100
500 383.8 7.58 7.58 11.86 24.82 1.000 1.565

1000 607.3 9.99 9.98 23.71 19.82 1.000 1.985
3000 907.7 7.69 7.70 71.13 9.61 1.000 1.249
5000 965.0 5.05 5.05 118.56 5.91 1.000 1.171

a = 1
2 2.0 0.04 0.05 0.05 31.59 1.412 1.415
5 5.0 0.11 0.13 0.13 31.54 1.116 1.122

10 9.9 0.24 0.26 0.26 31.47 1.053 1.064
50 48.4 1.21 1.22 1.29 30.85 1.008 1.064

100 93.7 2.31 2.32 2.58 30.10 1.004 1.117
500 368.1 7.75 7.76 12.91 25.14 1.000 1.664

1000 568.0 9.94 9.94 25.81 20.79 1.000 2.092
3000 834.1 8.60 8.60 77.44 12.88 1.000 1.497
5000 900.4 6.93 6.93 129.07 9.98 1.000 1.440

a = 2
2 2.0 0.04 0.06 0.06 31.59 1.411 1.415
5 5.0 0.13 0.15 0.15 31.54 1.116 1.124

10 9.9 0.28 0.30 0.30 31.47 1.052 1.067
50 47.9 1.38 1.40 1.50 30.86 1.008 1.083

100 91.7 2.60 2.60 3.00 30.14 1.003 1.155
500 336.9 7.88 7.88 15.00 25.75 1.000 1.903

1000 495.9 9.55 9.55 29.99 22.45 1.000 2.352
3000 704.9 8.90 8.91 89.98 17.18 1.000 1.929
5000 771.5 8.03 8.03 149.96 15.12 1.000 1.883
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To see how accurate these approximations are, we compared the approximate
variances with the true value for occupancy probability distributions pi = ia/c,
where c =

∑n
i=1 ia. When a = 0, occupancy probabilities are equal. The distri-

butions for a = 0, 1/2, 1, and 2 are shown in Figure 1. True and approximate
values of the standard deviation are provided in Table 1. From Table 1, we can
see that

σ ≤ σ1 ≤ min(σ2, σ3) (3.14)

where σ =
√

V ar(Mr,n).

4. Occupancy Problem When Cells Are Filled with Balls of Different
Colors

In this section, we consider an occupancy model with cells filled by different
colored balls. For simplicity, suppose that balls are colored either black or white
and there are r1 black and r2 white balls. We are interested in the expected
number of black balls falling in cells that have white balls. Suppose that balls of
both colors are distributed into n cells with the same distribution probabilities
p1, . . . , pn . Suppose that the r2 white balls are distributed in k2 cells labeled
i1, . . . , ik2 . The probability that a ball falls in these cells is

pwhite =
k2∑

j=1

pij (4.1)

Let R12 be the number of black balls occupying cells i1, . . . , ik2 . Then R12

has a binomial distribution Bin(r1, pwhite). Therefore, we have

E(R12) = r1pwhite and V ar(R12) = r1pwhite(1 − pwhite) (4.2)

In the equal occupancy probability situation, all pi = 1/n and pwhite = k2/n.
The mean and variance are

E(R12) = r1k2/n (4.3)

and

V ar(R12) = r1k2(n − k2)/n2. (4.4)

5. Application to Analysis of Duplicates in AIDS Case Reporting

As we mentioned earlier, in AIDS surveillance, the partial personal identifiers
reported to CDC cannot uniquely identify an individual. Among data elements
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reported to CDC, sex, date of birth, and soundex (a code based on last name using
a method of encryption, see Fenna, 1984) are used for duplicate evaluation. Since
the frequency of letters in last names is not uniform, the soundex does not have
a uniform distribution over its possible values in the general population. This is
also true among persons with AIDS. Although sex is fairly uniformly distributed
in the general population, persons with AIDS are more likely to be male than
female. Dates of birth for persons with AIDS do not have a uniform distribution
over calendar dates, so we cannot directly apply the occupancy model with equal
occupancy probabilities to evaluate the duplicate reporting in AIDS surveillance.
Note, however, that the date of birth can be considered a combination of birth
year and birth day in a year. Among persons diagnosed with AIDS, birth year
does not have a uniform distribution over the calendar years. However, the birth
day is quite uniformly distributed within a calendar year. Therefore, if we stratify
the reported AIDS cases by sex, soundex, and birth year, then we can apply the
occupancy results developed in section 2 to evaluate duplicate reporting based
on matched birth days within each stratum.

Table 2: Estimates related to duplicate reporting of AIDS cases reported to
CDC by June of 2004.

Male Female Total

Number of reported cases (n) 748,950 173,312 922,262
Number of distinct codes∗ (k) 675,132 165,284 840,416
Estimated number of AIDS cases (r) 716,230 168,308 884,538

standard deviation of r 233 58 240
95% confidence interval: low 715,773 168,195 884,068

high 716,686 168,421 885,008
Number of potential duplicates (n − k) 73,818 8,028 81,846
Expected number of non-duplicates (r − k) 41,098 3,024 44,122
Estimated number of true duplicates (n − r) 32,720 5,004 37,724
Percent of true duplicates (n − r)/r 4.37 2.89 4.09
95% confidence interval: low 4.31 2.82 4.04

high 4.43 2.95 4.14

∗combination of sex, soundex, and date of birth.

If there were no true duplicates (multiple cases reported for the same person)
in the AIDS surveillance system, then given the number of cases reported to the
system (which would equal the number of persons with AIDS reported to the
system), the number of distinct combinations of sex, soundex, and date of birth
would satisfy the equations provided in the previous sections. In this application,
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persons or cases are considered as balls, and cells comprise the various combina-
tions of sex, soundex, and date of birth. Since the number of sex, soundex, and
date of birth combinations is observable and not affected by true duplicate re-
porting, we can work backwards to estimate the number of reported persons with
AIDS. If the actual number of reported cases is greater than this estimated num-
ber of distinct persons reported, then there exists evidence of duplicate reporting
(true duplicates) in the AIDS case reporting system.

As of June 2004, there were 922,835 AIDS cases reported to CDC. After
eliminating 573 cases with unknown sex or soundex, or incomplete date of birth,
n = 922, 262 cases are used in our duplicate analysis; they “occupy” 840,416
distinct combinations of sex, soundex, and date of birth, thus revealing 81,846
potential duplicates. By following the procedure described in Section 2, we esti-
mate that 37,724 or 4.09% of total reported cases are true duplicates with a 95%
confidence interval (4.04%, 4.14%). This percentage varied by sex (see Table 2).

Figure 2: Observed number of potential duplicates vs. expected number of
potential duplicates (without true duplicates) within each diagnosis state by
sex. Results are based on cases reported to CDC by June of 2004.

We next analyzed the potential duplicates for cases diagnosed within each
state. If there are no true duplicates in each state, then the number of potential
duplicates can be estimated using the formulas provided in section 2. Based
on AIDS cases reported to CDC by June of 2004, we compare the observed
numbers of potential duplicates in each state to the expected number of potential
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duplicates (Figure 2). States with a small number of AIDS cases tend to have
more true duplicates (the observed number of potential duplicates greater than
the expected number of potential duplicates), while in states with a large number
of AIDS cases, the observed numbers of potential duplicates are consistently less
than the expected numbers of potential duplicates.

We also evaluated the problem of duplicate reporting of AIDS cases between
states. Cases diagnosed in one state may have the same partial personal identifier
as cases diagnosed in other states. The number or proportion of true inter-state
duplicates can be estimated using the method described in section 4. Results
based on AIDS cases reported to CDC by June of 2004 are shown in Figure
3. States with a smaller number of potential duplicates tend to have a higher
proportion of true duplicates.

Figure 3: Expected proportion of true duplicates among potential duplicates
in a state with other states. Results are based on cases reported to CDC by
June of 2004.

6. Summary and Discussion

In this paper, we provided formulas to calculate the exact variance of the
number of empty cells in occupancy problems with equal or unequal occupancy
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probabilities. We also considered a generalized occupancy problem with balls of
different colors. These results are useful for evaluating duplicate reporting in case
surveillance of a disease in which a unique identifier is not available but for which
duplicate case reporting is likely to occur.

Although the duplication analysis cannot tell whether a particular pair of
potential duplicates is a pair of true duplicates or non-duplicates, it does help
identify problems and can be used to estimate the magnitude of true duplicates
in a surveillance system. The precision of the duplicate analysis depends on the
number n of cells and the number r of cases in each stratum. More precisely,
it depends on r and the probability that two distinct cases have the same code
composed of a combination of personal identification variables. This probabil-
ity takes on a minimum value of 1/n when all possible codes are equally likely.
On the other hand, if, for example, soundex (with more than 8000 possible out-
comes) is the only partial personal identifier considered, then two persons have
approximately a 1/450 probability of having the same code.

An assumption underlying our work is that the data elements used as a partial
personal identifier, or stratification variables, have values that do not vary over
time for each individual. If for some reason, a person’s partial personal identifiers
used for duplication assessment change, then the method will underestimate the
number of true duplicates. For example, a woman’s soundex could be changed
due to marriage. Also, data entry errors of partial personal identifiers could result
in underestimating the number of true duplicates unless the same error occurs
consistently in reporting.

Using this occupancy model, we estimate that approximately 4% of AIDS
cases reported in the national AIDS surveillance system up to June 2004 represent
duplicate reports. This is consistent with previous findings (page 40, Centers for
Disease Control and Prevention, 2004) that less than 5% of HIV and AIDS cases
in the national surveillance database are duplicates, and is in compliance with
recommended performance standards for well functioning surveillance systems
that set a minimum performance standard for duplicate reports of ≤ 5%. These
methods could be used to monitor national and state surveillance systems as a
performance indicator — should estimated duplication rates exceed 5%, evalua-
tion of surveillance practices for intrastate duplication efforts and communication
between states for interstate duplication assessment can be undertaken.
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