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Abstract: The interest in estimating the probability of cure has been increas-
ing in cancer survival analysis as the cure of some cancer sites is becoming a
reality. Mixture cure models have been used to model the failure time data
with the existence of long-term survivors. The mixture cure model assumes
that a fraction of the survivors are cured from the disease of interest. The
failure time distribution for the uncured individuals (latency) can be mod-
eled by either parametric models or a semi-parametric proportional hazards
model. In the model, the probability of cure and the latency distribution
are both related to the prognostic factors and patients’ characteristics. The
maximum likelihood estimates (MLEs) of these parameters can be obtained
using the Newton-Raphson algorithm. The EM algorithm has been proposed
as a simple alternative by Larson and Dinse (1985) and Taylor (1995). in
various setting for the cause-specific survival analysis. This approach is ex-
tended here to the grouped relative survival data. The methods are applied
to analyze the colorectal cancer relative survival data from the Surveillance,
Epidemiology, and End Results (SEER) program.

Key words: Mixture cure model, relative survival.

1. Introduction

In the study of cancer incidence and mortality of the population, mixture cure
models Boag (1949) have been used for failure time data with long term survivors.
These models assume that a fraction of the patients are cured from the disease
of interest. The cured individuals will never experience the event. However, the
uncured patients are at risk of eventual failure from the disease, and the event
would be observed with certainty if the complete follow-up were possible. The
uncured patients experience excessive mortality rates in excess of the general
population. Information on the patients’ causes of death may not always be
suitable for correcting survival rates as it may be inaccurate or unavailable. The
relative survival rate Ederer, Axtell, and Cutler (1961). , defined as the ratio of
the observed survival rate for the group of patients under consideration to the
survival rate expected for a group taken from the general population matched to
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the patients on age, race, sex and year of diagnosis, estimates the impact of the
cancer on the mortality.

Population-based survival data are often presented in the form of a life table.
The period of observations is grouped into a series of time intervals and the
survival probabilities are estimated for each interval. Suppose that the survival
data are categorized into I strata by demographical groups such as sex, age and
the prognostic factors, e.g. historical stage, histologic type. The event times are
grouped into J intervals (tj−1, tj ], j = 1, ..., J, for each stratum, where t1 = 0
and t1, ..., tJ are distinct event times and tJ = τ is the end of the follow-up. The
observed data in stratum i and interval j consist of nij, the number of individuals
who are alive at the beginning of the interval; dij , the number of individuals who
die during the interval; lij , the number of individuals lost to follow-up during the
interval. The number of people at risk during the interval adjusted for uniform
loss is n

′
ij = nij − 1

2 lij and the adjusted number of people surviving the interval
is sij = n

′
ij − dij . The expected survival rate, Eij , is the probability of surviving

interval Ij for the comparable general population.
When the information on cause of death is not available or unreliable, relative

survival is used as the measure of excess mortality (net survival) due to cancer
of interest. Let S(t) = P (T > t|x, θ) be the net survival function, where θ is the
parameter vector and x is the covariate vector. The interval specific net survival
function is

rij(θ;xi) =
S(tj ;xi)

S(tj−1;xi)
. (1.1)

Let pij(θ;xi, Eij) = P (T > tj|T ≥ tj−1; θ, xi, Eij) be the probability that an
individual in stratum i survives until time tj from all causes given that she is alive
at tj−1. It is generally thought that an additive hazards model is biologically
more plausible and most appropriate for the population-based cancer survival
analysis. The additive hazards model implies that pij(θ;xi, Eij) = rij(θ;xi)Eij .
The loglikelihood function for the grouped relative survival data (x, s, d,E) =
{(xi, sij , dij , Eij), i = 1, ..., I, j = 1, ..., J} is

�(θ|x, s, d,E) =
I∑

i=1

J∑
j=1

{
sij log pij(θ;xi, Eij) + dij log(1 − pij(θ;xi, Eij))

}
. (1.2)

and the maximum likelihood estimate (MLE) of θ is obtained by maximizing the
loglikelihood.

When there is no cure, i.e., c = 0, the survival function S(t;x) is usually
specified by parametric or semi-parametric models. Prentice and Gloeckler (1978)
discussed the semi-parametric proportional hazards (PH) regression model for the
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grouped cause-specific survival data. Hakulinen and Tenkanen (1987) extended
the PH regression model to the relative survival data and provided a simpler
estimation method. When cure is a possibility, the survival function is usually
modeled by a mixture model Boag (1949), Farewell (1982):

S(t;x) = c(x) + (1 − c(x))G(t;x), (1.3)

where c(x) is the probability of cure and G(t;x) denotes the survival (latency) dis-
tribution for the uncured individuals (susceptibles). Define a binary cure status
z where z = 0 indicates that an individual will experience the event eventually,
and z = 1 indicates that the individual will never experience the event, i.e., will
be cured. The cure probability is typically modeled as Farewell (1982):

c(x) = P (z = 1|x) =
exp(βcx)

1 + exp(βcx)
. (1.4)

Let the latency distribution be G(t) = exp{−Λ(t)}, where Λ(t) is the cumulative
hazard function. The Cox PH model assumes that

Λ(t) = Λ0(t) exp(βλx) (1.5)

where Λ0(t) is the unspecified baseline cumulative hazard function and for the
Weibull model, Λ(t) = [λxt]δ, where δ and λx are the shape and scale parameters,
respectively and λx is usually modeled as

λx = exp(βλx). (1.6)

Note that when δ = 1, G(t) reduces to an exponential model. Other parametric
models, e.g., loglogistic model and lognormal models, have also been used to
model G(t) (Yu et al., 2004). Here, we will focus on the Cox model and the
Weibull model.

The parametric mixture cure models have been used to analyze population-
based survival data by Gamel et al. (2000) and De Angelis et al. (1999). Sy and
Taylor (2000) provided a semi-parametric mixture cure model to the continuous
survival data. Recently, Yu et al. (1999) developed a software for analyzing the
grouped relative survival data using parametric cure models. The software is
available for public use at http://www.srab.cancer.gov/cansurv. In this paper,
we provide a simple alternative, the EM algorithm, to estimate the mixture cure
model for grouped relative survival data. The rest of the paper is organized as
follows. In Sections 2 and 3, we describe the EM algorithm for mixture cure
model (1.3). In Section 4, we illustrate the methods using the colorectal cancer
survival data from SEER 9 registries.
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2. EM Algorithm for the Mixture Cure Model for Grouped Relative
Survival Data

When there is no cure, i.e., c = 0, the survival functions for the Weibull and
Cox regression models are given by

S(tj ;xi) =
{

exp[−{exp(βλxi)tj}δ ] Weibull model,
exp{−Λ0(tj) exp(βλxi)} Cox model.

The interval specific survival probabilities are

rij(θ;xi) =
{

exp{− exp(βλxiδ)(tδj − tδj−1)} Weibull model,
exp{− exp(αj + βλxi)} Cox model,

(2.1)

where αj = log(Λ0(tj)−Λ0(tj−1)) for the Cox model. Notice that αj , j = 1, ..., J
are the coefficients of the interval indicators Ij, j = 1, ..., J .

Because the number of people surviving through the interval Iij follows a
binomial distribution Bin(n

′
ij, pij, (θ;xi, Eij)), equation (2.1) implies generalized

linear models (GLM) with link functions

βλxi =
1
δ

[
log

{
− log

( µij

n
′
ijEij

)}
− log(tδj − tδj−1)

]
(2.2)

for Weibull model, and

αj + βλxi =
[
log

{
− log

( µij

n
′
ijEij

)}
− log(tj − tj−1)

]
(2.3)

for Cox model, where µij = n
′
ijpij(θ;xi, Eij) is the mean response. Other com-

monly used forms of latency distribution such as the exponential and log-logistic
models can also be put in the framework of GLM with special link functions
(Weller et al., 1999). The parameters to be estimated are βG = (βλ, δ) for the
Weibull model and βG = (βλ, α1, ..., αJ ) for the Cox model. The MLEs of the
parameters can be found by using the standard statistical packages such as GLIM
and SAS (Weller et al., 1999; Hakulinen and Tenkanen (1987).

When the mixture cure model (1.3) is applied, the parameters of interest are
the cure parameter βc and the latency parameter βG. Gamel et al. (2000); De
Angelis et al. (1999); and Yu et al. (1999) used the Newton-Raphson method to
find the MLEs of the parameters. Here, we propose the EM algorithm, a simple
alternative which is easy to implement using the standard statistical packages.

Let S0(t, x) denote the expected cumulative survival probability. We can
write S0(tj ;xi) =

∏j
k=1 Eij . Let ci = c(xi), Si(tj) = S(tj;xi), Gi(tj) = G(tj ;xi)
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and S0i(tj) = S0(tj ;xi) for i = 1, ..., I. After plugging (1.1) into the loglikelihood
(1.2), the loglikelihood function can be expressed as

�(θ|x, s, d,E)

=
I∑

i=1

J∑
j=1

{
mij log

[
Si(tj)S0i(tj)

]
+ dij log

[
Si(tj−1)S0i(tj−1) − Si(tj)S0i(tj)

]}

=
I∑

i=1

J∑
j=1

{
mij log

[
ciS0i(tj) + (1 − ci)Gi(tj)S0i(tj)

]

+ dij log[(1 − ci)(Gi(tj−1)S0i(tj−1) − Gi(tj)S0i(tj))

+ ci(S0i(tj−1) − S0i(tj))]
}

,

where

mij =
{

sij − (si,j+1 + di,j+1) = 1
2(lij + li,j+1) if j < J

siJ if j = J.

Note that mij can be interpreted as the number of individuals censored right
at time tj. If we have observed the number of cured and censored patients at
interval j in stratum i, the individuals can be classified into one of the following
four groups : not cured and die; not cured and censored; cured but die from
causes other than cancer; cured and censored (Table 1).

Table 1: Classification of individuals by cure and censoring status

Number Status Probability

d∗ij Not cured, die (1 − ci)[S0i(tj−1)Gi(tj−1)
− Gi(tj)S0i(tj))]

m∗
ij Not cured, censored (1 − ci)S0i(tj)Gi(tj)

dij − d∗ij Cured, die from other causes ci[S0i(tj−1) − S0i(tj)]
mij − m∗

ij Cured, censored for other cause ciS0i(tj)

The loglikelihood based on the complete data (d,m, d∗,m∗) = {(dij ,mij , d
∗
ij ,

m∗
ij), i = 1, ..., I, j = 1, ..., J} is

�(θ|x, d,m, d∗,m∗, E)

=
I∑

i=1

J∑
j=1

[
(dij − d∗ij) log{ci(S0i(tj−1) − S0i(tj))}

+ (mij − m∗
ij) log{ciS0i(tj)} + d∗ij log{(1 − ci)(S0i(tj−1)Gi(tj−1)

− Gi(tj)S0i(tj))} + m∗
ij log{(1 − ci)S0i(tj)Gi(tj)}

]
. (2.4)
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The loglikelihood can be decomposed into two parts:

�(βc) =
I∑

i=1

J∑
j=1

{
(dij − d∗ij + mij − m∗

ij) log ci + (d∗ij + m∗
ij) log(1 − ci)

}
,

�(βG) =
I∑

i=1

J∑
j=1

[
m∗

ij log{Gi(tj)S0i(tj)} + d∗ij log{Gi(tj−1)S0i(tj−1)

− Gi(tj)S0i(tj)} + (mij − m∗
ij) log Si0(tj)

+ (dij − d∗ij) log{S0i(tj−1) − S0i(tj)}
]
.

Let

s∗ij =
{

m∗
iJ if j = J

m∗
ij + s∗i,j+1 + d∗i,j+1 if j < J.

Here, s∗ij are the uncured individuals who survive the interval Ij = (tj−1, tj]. The
loglikelihood �(βG) for uncured individuals can be expressed as

�(βG) =
I∑

i=1

J∑
j=1

{
s∗ij log p∗ij(θ;xi, Eij) + d∗ij log(1 − p∗ij(θ;xi, Eij))

}
+ ∆, (2.5)

where

p∗ij(θ;xi, Eij) =
Gi(tj)S0i(tj)

Gi(tj−1)S0i(tj−1)
=

G(tj ;xi)
G(tj−1;xi)

Eij

and
∆ = (mij − m∗

ij) log Si0(tj) + (dij − d∗ij) log{S0i(tj−1) − S0i(tj)}
is a constant given the complete data.

In the E-step, compute the conditional expectation of the missing data (m∗
ij , d

∗
ij)

given the observed data (mij , dij) and current estimates θ̂, i.e.,

E(m∗
ij |dij ,mij , θ̂) = mijwij and E(d∗ij |dij ,mij, θ̂) = dijηij , (2.6)

where

wij =
(1 − ci)Gi(tj)

ci + (1 − ci)Gi(tj)
and ηij = 1 − ci(S0i(tj−1) − S0i(tj))

Si(tj−1)S0i(tj−1) − Si(tj)S0i(tj)
.

In the M-step, the MLE of βc from �(βc) is obtained by fitting a logistic regression;
the MLE of the parameters βG can be obtained by GLIM or PROC GENMOD.
For details see Weller et al. (1999) and Hakulinen and Tenkanen (1987).
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The covariance matrix of θ̂ is given by the inverse of the information matrix,
and this can be estimated by the covariance matrix of the score vectors. The
score vectors are Uij = ∂�ij(θ)

∂θ , where

∂�ij(θ)
∂θk

=
I∑

i=1

J∑
j=1

{
mij

∂Si(tj)
∂θk

Si(tj)
+ dij

∂Si(tj−1)
∂θk

− Eij
∂Si(tj )

∂θk

Si(tj−1) − EijSi(tj)

}
,

and

∂Si(t)
∂θk

=




xikci(1 − ci)(1 − Gi(t)) if θk∈ βc,
xikδ(1 − ci)Gi(t) log Gi(t) if θk∈ βG,
(1 − ci)Gi(t) log Gi(t){log(− log Gi(t))}/δ if θk= δ.

3. Application

Colorectal cancer is the third most common cancer and the second common
cause of cancer death in the US, with about 145,290 new cases and 56,290 deaths
expected in 2005. When men and women are considered separately, colorectal
cancer is the third most common cause of cancer death in each sex. Over the
past decade, colorectal cancer incidence and mortality rates have modestly de-
creased or remained level. Until age 50, men and women have similar incidence
and mortality rates; after age 50, men are more vulnerable. There are striking
differences with respect to racial and ethnic groups in both incidence and mor-
tality. As cancer treatments progress, the cancer patients may live long enough
and die from other causes.

Several different types of treatments are often combined to treat colorectal
cancer. Surgery to remove the tumor is the cornerstone of treatment for tumors
found to be potentially curable. Additional chemotherapy and, in cases of rectal
cancer, chemotherapy and radiation therapy, have been proven to improve a
patient’s chance for cure and longer life. It is of interest to estimate the cure
fractions by race, sex and historical stages using the population-based cancer
survival data.

The Surveillance, Epidemiology, and End Results (SEER) Program of the
National Cancer Institute is an authoritative source of information on the cancer
incidence and survival in the United States. Case ascertainment for the SEER-
9 registries began on January 1, 1973, in the states of Connecticut, Iowa, New
Mexico, Utah, Hawaii, the metropolitan areas of Detroit, San Francisco-Oakland
and Atlanta and the 13-county Seattle-Puget Sound area. The SEER Registries
routinely collect data on patient demographics, primary tumor site, morphology,
stage at diagnosis, first course of treatment, and follow-up for vital status. Here
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we used the method described in Section 2 to analyze the colorectal cancer relative
survival data from SEER-9 registries.

The colorectal cancer incidence and mortality rates are more than 35% higher
in men than in women (American Cancer Society, 2005). Hence, the data were
analyzed by male and female, separately. The parameter estimates and standard
errors of the Weibull cure models are presented in Table 2. For both men and
women, race and historic stages are significantly related to both the cure fraction
and the short-term survival rate (latency parameter λx), except that the differ-
ence of short-term survival between the white females and the black females is
not significant. The cure fraction estimates are listed in Table 3. The localized
colorectal cancer has very high cure fractions 74.2-79.3%, which are much higher
than those for the regional (40.4-50.4%) and the distant colorectal cancer (4.6-
6.8%). This indicates that early detection of colorectal cancer can substantially
improve the cure rates, which reinforces the benefit of colorectal cancer screening.
Also notice that the cure rates are higher for the whites than those for the blacks.

Table 2: Parameter estimates of the Weibull cure models for the colorectal
cancer relative survival data

Male Female

Parameters Estimate Std-Error Estimate Std-Error

Parameter in cure c(x)

Intercept 1.288 0.015 1.345 0.014
Race (Black vs. White) -0.212 0.045 -0.287 0.036
Localized
Regional -1.463 0.017 -1.328 0.015
Distant -4.109 0.030 -3.958 0.025

Parameters in scale λx

Intercept -1.734 0.016 -1.691 0.017
Race (Black vs. White) 0.106 0.013 0.009 0.013
Localized
Regional 0.369 0.016 0.509 0.016
Distant 1.687 0.016 1.774 0.017

Shape Parameter δ

δ 0.980 0.002 0.940 0.002
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Table 3: Estimates of cure fraction by sex, race and historic stage

Sex Race Localized Regional Distant

Female White 79.3 50.4 6.8
Black 74.2 43.3 5.2

Male White 78.4 45.6 5.6
Black 74.6 40.4 4.6

4. Discussion

This paper provides an EM algorithm to fit the mixture cure model to the
grouped relative survival data. It can fit both a parametric or a semi-parametric
mixture cure model. This algorithm utilizes the standard statistical software to
achieve the M-step and is easier to implement than the Newton-Raphson. The
EM algorithm is usually stabler than the Newton-Raphson method (Yu et al.,
1999) and the convergence of the EM algorithm is generally fast for the grouped
survival data. A SAS macro is available to implement the EM algorithm.

A word of caution is needed about the existence of cure fraction and sta-
bility of cure fraction estimates. The mixture cure model generally requires a
sufficiently long follow-up and large samples to identify the parameters in cure
fraction and latent survival distribution for uncured individuals (Farewell, 1986).
The cure fraction estimates may be sensitive to the specification of latency dis-
tributions when the follow-up time is not sufficient (Yu et al., 2004). We need
to be cautious in interpreting the cure fraction estimate. Hence, we would only
suggest to use the mixture cure models in situations where it is clear that a cured
group exists and where there is sufficient follow-up beyond the time when most
of the events occur.
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