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Abstract: Longitudinal data often arise in clinical trials when measure-
ments are taken from subjects repeatedly over time so that data from each
subject are serially correlated. In this paper, we seek some covariance matri-
ces that make the regression parameter estimates robust to misspecification
of the true dependency structure between observations. Moreover, we study
how this choice of robust covariance matrices is affected by factors such as
the length of the time series and the strength of the serial correlation. We
perform simulation studies for data consisting of relatively short (N=3),
medium (N=6) and long time series (N=14) respectively. Finally, we give
suggestions on the choice of robust covariance matrices under different situ-
ations.
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1. Introduction

In ordinary regression, the error terms are assumed to be independently and
identically distributed with a constant variance. However, these assumptions are
not always true in practice. For example, when subjects are measured repeat-
edly over time in longitudinal studies, observations from each subject are usually
serially correlated. Such time series are common in clinical trials and stock mar-
kets. Then, it is customary to consider a generalized regression model in which
errors are modeled by a covariance matrix with non-constant variances and non-
zero covariances. Lindsey (1993) points out the importance of estimating such
a covariance matrix. However, the number of unknown elements in the matrix
can increase quadratically with its dimension causing considerable difficulties in
estimation. Various approaches have been suggested, see for example, Efron and
Morris (1976) who estimated the inverse of a covariance matrix using a loss func-
tion, Yang and Berger (1994) who applied a spectral decomposition to a covari-
ance matrix, Chiu et al. (1996) who applied a matrix exponential transformation
to a covariance matrix and estimated the parameters in the transformed matrix
as well as the mean model using an ML approach and Barnard et al. (2000) who
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modeled the covariance matrix in terms of its standard deviations and correla-
tion matrix and estimated the parameters using a Bayesian approach. Instead of
resorting to this complicated techniques, we propose the generalized regression
models in which the covariance matrices are based on widely used forms, and we
seek those structures that are robust to misspecification of the true structures
which are often unknown in practice.

We use the PROC MIXED procedure in SAS, the Statistical Analysis Soft-
ware, to fit the generalized regression models for continuous outcomes, incorpo-
rating different choices of covariance structures with parameters estimated from
the restricted maximum likelihood (REML) method (Patterson and Thompson,
1971). Fortran programs are used to simulate data sets of time series from mul-
tivariate normal distributions with different covariance matrices. Then the simu-
lation experiments are carried out by fitting models adopting different covariance
matrices repeatedly using the PROC MIXED procedures written in SAS macros.

In section 2, we describe the model and estimation procedures. We introduce
some common covariance structures and their interpretation in terms of depen-
dency structures between observations. Three criteria for assessing goodness-of-fit
are also given. Performance of the models adopting different covariance matrices
can be compared through simulation. Since the length of the time series and the
strength of the serial correlation may affect the choice of robust covariance struc-
tures, simulation experiments are performed in section 3, using two data sets: the
blood glucose data for relatively short and medium time series with weak serial
correlation (N=3 and 6 and ρ = 0.36 in the covariance matrix of AR1 type), and
the plasma citrate concentration data available for relatively longer time series
with stronger serial correlation (N=14 and ρ = 0.70). True values of parame-
ters in the simulation experiments are set equal to the estimates obtained from
fitting the two data sets. Moreover we also consider other sets of the parameter
values in the covariance matrix in order to study the interaction effect of the two
factors: the length of the time series and the strength of the serial correlation on
the choice of robust covariance structure. Results from simulations are analyzed
and compared in section 4. Finally, in section 5, conclusions are drawn on the
best covariance structures that give consistently the best fit, regardless of the
true covariance structures.

2. The Model

We assume a generalized regression model of the form

Y = Xβ + ε

where Y = (Y11, Y12, . . . , YMN )T is a vector of MN observed outcomes based on
M time series each containing responses from one subject on N equally spaced
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time points, β = (β0, β1, . . . , βPb
)T is a vector of (Pb + 1) parameters, X is a

MN×(Pb+1) design matrix, ε is a vector of MN residuals such that ε ∼ N(0,Σ)
and Σ is the block diagonal matrix with covariance matrix Σ0 for each subject.
The covariance matrix Σ0 with Pv variance parameters and Pc covariance or
correlation parameters describes the relationship between observations within
each subject; we assume that the correlations between observations from different
subjects are zero. There are P = Pb + Pv + Pc + 1 parameters in total; emphasis
is on the estimation of β.

Table 1: The seven types of the covariance matrix

Type Properties

Simple
(SIM) σ2

2
4

1 0 0
0 1 0
0 0 1

3
5

Constant variance V ar(εi) = σ2

Zero covariance Cov(εi, εj) = 0
Pv = 1 & Pc = 0

Equal
correlation
(EC)

σ2

2
4

1 ρ ρ
ρ 1 ρ
ρ ρ 1

3
5

Constant variance V ar(εi) = σ2

Constant covariance Cov(εi, εj) = σ2ρ
Pv = 1 & Pc = 1

Unstructured
independent
(UN1)

2
4

σ2
1 0 0
0 σ2

2 0
0 0 σ2

3

3
5

Non-constant variance V ar(εi) = σ2
i

Zero covariance Cov(εi, εj) = 0
Pv = N = 3 & Pc = 0

Unstructured
2 bands
(UN2)

2
4

σ2
1 σ12 0

σ12 σ2
2 σ23

0 σ23 σ2
3

3
5

Non-constant variance V ar(εi) = σ2
i

Non-zero covariance for given time lag=1
Cov(εi, εj) = σij , abs(i − j) = 1
Pv = N = 3 & Pc = N − 1 = 2

First-order
autoregressive
(AR1)

σ2

2
4

1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

3
5

Constant variance V ar(εi) = σ2

Equal covariance for given time lag k

Cov(εi, εj) = σ2ρk, abs(i − j) = k
Pv = 1 & Pc = 1

Toeplitz
(TOEP) σ2

2
4

1 ρ1 ρ2

ρ1 1 ρ1

ρ2 ρ1 1

3
5

Constant variance V ar(εi) = σ2

Equal covariance for given time lag k
Cov(εi, εj) = σ2ρk, abs(i − j) = k
Pv = 1 & Pc = N − 1 = 2

Toeplitz)
2 bands

(TOEP2)
σ2

2
4

1 ρ1 0
ρ1 1 ρ1

0 ρ1 1

3
5

Constant variance V ar(εi) = σ2

Equal covariance for given time lag=1
Cov(εi, εj) = σ2ρ1, abs(i − j) = 1
Pv = 1 & Pc = 1
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The restricted maximum likelihood (REML) estimates of the Pv + Pc param-
eters in Σ0 can be obtained by maximizing the reduced log-likelihood

L∗ = −1
2

{
log

[
Y − Xβ̂

]T
Σ−1

[
Y − Xβ̂

]
+ M log(|Σ0|)

}
− 1

2
log(|XΣ−1X|) (2.1)

and the REML estimate of β is

β̂ = (XΣ̂
−1

X)−1XΣ̂
−1

Y (2.2)

where Σ̂ is obtained by substituting the block diagonal matrix Σ0 by Σ̂0. As the
REML estimate, Σ̂0 using (2.1), depends on β̂ and the REML estimate, β̂ using
(2.2), depends on Σ̂0 in Σ̂, iterations are required. Moreover, as β̂ depends on Σ0,
we seek some covariance matrices for Σ0 that consistently give the best estimate
of β and the best fit to data if the true dependency structure is misspecified.

For short time series of length N = 3 say, the covariance matrix Σ0 can be
modeled by J = 7 types, as listed in Table 1.

Note that we discard the unstructured (UN) covariance matrix with no con-
straints imposed on its entities σij because it contains too many parameters and
offers no summary of information. Practically, correlation between observations
with large time lag is very small and hence it can be well approximated by UN2
especially for time series of medium to long in length. For time series of medium
length, N = 6 say, SIM and EC can be represented by σ2I6 (Pv = 1, Pc = 0)
and σ2(1 − ρ)I6 + σ2ρJ6 (Pv = 1, Pc = 1) respectively where I6 and J6 denote
respectively a 6× 6 identity matrix and a 6× 6 matrix with all elements being 1.
The remaining matrices are:

UN1 UN22
6666664

σ2
1 0 0 0 0 0
0 σ2

2 0 0 0 0
0 0 σ2

3 0 0 0
0 0 0 σ2

4 0 0
0 0 0 0 σ2

5 0
0 0 0 0 0 σ2

6

3
7777775

2
6666664

σ2
1 σ21 0 0 0 0

σ21 σ2
2 σ32 0 0 0

0 σ32 σ2
3 σ43 0 0

0 0 σ43 σ2
4 σ54 0

0 0 0 σ54 σ2
5 σ65

0 0 0 0 σ65 σ2
6

3
7777775

(Pv = 6, Pc = 0) (Pv = 6, Pc = 5)
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AR1 TOEP

σ2

2
6666664

1 ρ ρ2 ρ3 ρ4 ρ5

ρ 1 ρ ρ2 ρ3 ρ4

ρ2 ρ 1 ρ ρ2 ρ3

ρ3 ρ2 ρ 1 ρ ρ2

ρ4 ρ3 ρ2 ρ 1 ρ
ρ5 ρ4 ρ3 ρ2 ρ 1

3
7777775

σ2

2
6666664

1 ρ1 ρ2 ρ3 ρ4 ρ5

ρ1 1 ρ1 ρ2 ρ3 ρ4

ρ2 ρ1 1 ρ1 ρ2 ρ3

ρ3 ρ2 ρ1 1 ρ1 ρ2

ρ4 ρ3 ρ2 ρ1 1 ρ1

ρ5 ρ4 ρ3 ρ2 ρ1 1

3
7777775

(Pv = 1, Pc = 1) (Pv = 1, Pc = 5)

TOEP2

σ2

2
6666664

1 ρ1 0 0 0 0
ρ1 1 ρ1 0 0 0
0 ρ1 1 ρ1 0 0
0 0 ρ1 1 ρ1 0
0 0 0 ρ1 1 ρ1

0 0 0 0 ρ1 1

3
7777775

(Pv = 1, Pc = 1)

For time series of longer length, N = 14 say, the covariance matrices of J = 7
types are similarly defined as in the cases of N = 3 and N = 6. Some of these
covariance matrices can be directly linked to particular models. Let Ymn denote
the outcome of the n-th measurement from subject m. Then EC corresponds to a
random intercept model Ymn = µmn+Um+Zmn, m = 1, . . . ,M and n = 1, . . . , N
where µmn = E(Ymn), Um ∼ N(0, σ2ρ), Zmn ∼ N(0, σ2(1 − ρ)) and Um and
Zmn are independent. Hence we have V ar(Ymn) = σ2, Cov(Ymn, Ymn′) = σ2ρ
and Σ0 can be rewritten as σ2(1 − ρ)I + σ2ρJ . (See Diggle et al. 1996) On
the other hand, AR1 (see Diggle et al. 1996) corresponds to the model Ymn =
µmn+εmn and εmn = ρεm,n−1+emn where emn ∼ N(0, σ2(1−ρ2)), V ar(εmn) = σ2

and Cov(εmn, εm,n−1) = σ2ρ and is one of the exponential correlation models.
Here σmn, denoting the mn-th element in Σ0, is defined to be σ2 exp(−φ|m −
n|) = σ2ρ|m−n| where φ is a constant showing the rate of decay. It implies that
covariance between a pair of measurements on the same subject decays to zero
as the time between measurements increases.

3. Goodness-of-fit Tests

In order to facilitate comparison between different covariance structures, data
set simulated from model adopting the i-th (i = 1, . . . , I) true covariance struc-
tures is fitted to models adopting each of the j-th (j = 1, . . . , J) structures and
there are K = 200 replicates for each (i, j) combination (I = J = 7). Then we
assess the goodness-of-fit of the J models adopting different covariance structures
based on three criteria Rhj , h = 1, 2, 3: the estimated parameters, their standard
errors and the Akaike’s Information Criterion (AIC) (Akaike, 1973). Let xij de-
note the value of any of the three criteria in each (i, j) combination. For each
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criterion, ranking is applied twice; firstly across the J fitted structures for each
of the i-th true structure as given by Rankj(xij) such that Rankj(xij) = 1 when
xij < xij′ , for all j′ 6= j and Rankj(xij) = J when xij > xij′ . When there are
ties, we take the average of ranks. Then Rankj(xij) is summed over i and second
ranking Rhj is applied across the sums,

∑
i Rankj(xij), for the J structures in the

fitted model. The first ranking Rankj(xij) is necessary because
∑

i Rankj(xij)
rather than

∑
i xij will not be affected by the scale of xij as well as any outlying

xij . If model with covariance structure j gives the smallest Rj , it provides the
best fit to data of different true covariance structures and hence is considered the
most robust covariance structure.

C1 Rank of mean squared error(RMSE):

R1j = Rankj

(
J∑

i=1

RMSEij

)
,

where

RMSEij =
P∑

p=0

Rankj

(
1
K

K∑
k=1

(β̂ijkp − βp)2
)

,

and β̂ijkp is the parameter estimate for βp in the k-th replicated data set
which is simulated from model adopting the i-th true covariance structure
and is fitted to model adopting the j-th covariance structure. This is a
useful criterion when our objective is parameter estimation.

C2 Ratio of standard error and standard derivation:

R2j = Rankj

(
I∑

i=1

Ratioij

)
,

where

Ratioij = Rankj

 P∏
p=1

max(SDijp, SEijp)
min(SDijp, SEijp)

 ,

SDijp =

 1
K − 1

K∑
k=1

[
β̂ijkp −

1
K

(
K∑

k=1

β̂ijkp

)]2


1
2

and

SEijp =
1
K

K∑
k=1

SE(β̂ijkp).
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Note that SE(β̂ijkp) is the standard error of βijkp. The ratio Ratioij be-
tween SDijp and SEijp measures the relative magnitude between the stan-
dard error (SE) and the standard derivation (SD) based on βijkp. We
expect Ratioij to be close to 1 (SD close to SE) if the models fit the data
well.

C3 Average of AIC:

R3j = Rankj

(
I∑

i=1

AICij

)
,

where

AICij = Rankj

(
1
K

K∑
k=1

AICijk

)
and AICijk is the AIC value in the k-th replicated data set when the fitting
involved the i-th true covariance structure and the j-th fitted structure.
This is a useful criterion when our objective is data fitting.

An overall measure of the goodness-of-fit of models adopting the J structures
based on these three criteria Rhj , h = 1, 2, 3 are

Rj = Rankj

(
3∑

h=1

Rhj

)
.

4. Simulation studies

4.1 Blood glucose data

Data of inter and intra individual variation of blood glucose levels (Andrews
and Herzberg 1985, P.211) obtained from registrants for pre-natal care at Boston
City Hospital, USA, are used to estimate the variation of blood glucose for women
on the pregnant and non-pregnant states. The data contain two parts. There
are 53 women in non-pregnant state. Each of them undertook an annual glucose
tolerance test over a period of six years. In each year, a fasting blood glucose test
and an one-hour-post-fasting blood glucose test were conducted. There are also
52 women in pregnant state, each having three fasting blood glucose tests and
three one-hour-post-fasting blood glucose tests. Outcomes are differences in blood
glucose concentration during fasting and one hour post fasting. Measurements
are in mg/100 ml. Variables in the analyses include

Dependent variable:
Y : the difference between their fasting and one hour post blood glucose level,
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Independent variables:
X1: the fasting blood glucose level,
X2: the indicator of pregnancy.

1. Data of pregnant and non-pregnant states women

Data from both pregnant and non-pregnant states women are used in the
analysis of short time series. It contains 315 (3 × (53 + 52)) observations
coming from M = 105 subjects each repeatedly measured N = 3 times. For
the 53 non-pregnant women, only the first three fasting and one-hour-post-
fasting blood glucose levels are used in the analysis. The overall means of Y
and X1 are respectively -21.72 and 76.08 whereas the corresponding means
for the pregnant group are -34.94 and 72.88 and for the non-pregnant group
are -8.74 and 79.21. The generalized regression model has Pb = 2. We use
the PROC MIXED in SAS to fit the generalized regression models with 7
different covariance matrices. Table 2 shows that all parameter estimates
are significant and the best model is EC according to AIC. By using
the parameter estimates in Table 2 as true values for each of the J = 7
covariance structures, we simulate K = 200 data sets (or totally 1400 data
sets) each having 105 trivariate normal vectors or 315 observations. Then
we fit each of the 1400 data sets to J = 7 covariance structures. The
fittings are done automatically using a SAS macro program. Moreover,
in order to study the interaction effect of the two factors: the length of
the time series and the strength of the serial correlation on the choice of
robust covariance structure, we repeat the whole simulation experiment
with an adjusted set of true values of which β′ remain the same but the
level of serial correlation is higher: ρ′ in AR1 and EC and ρ′1 in TOEP
and TOEP2 equal to 0.7, σ′

21 = 0.7σ2σ1 and σ′
32 = 0.7

ρ32

ρ21
σ3σ2 in UN2 and

ρ′2 = 0.7
ρ2

ρ1
in TOEP. Obviously, models fitting to data simulated from the

same covariance structure are generally the best according to AIC. On

the other hand, Table 3 reports the sum of ranks (
7∑

i=1
RMSEij ,

7∑
i=1

Ratioij ,

7∑
i=1

AICij) and the ranks Rhj , h = 1, 2, 3 respectively. Across levels of ρ

(0.36 and 0.7 in AR1 say), the ranks R2j according to ratio of SD and SE
are identical, the ranks R1j according to MSE are similar but the ranks
R3j according to AIC are quite different. Table 3 also reports the overall
rank Rj for each structure according to the three criteria. The choices are
not the same across levels of ρ but AR1 generally performs well according
to both MSE and AIC. Hence AR1 is a good choice of robust covariance
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structure for both data fitting and parameter estimation.

Table 2: Parameter estimates for models with different covariance structures
for the blood glucose data (N = 3 with an original low level and an adjusted
high level of ρ)

Type Estimates (S.E.) Variance Covariance/correlation AIC
(adjusted)

SIM β0 = −26.1112 (9.75) σ2 = 460.2936 2821.0
β1 = 0.2192 (0.12)
β2 = −24.8136 (2.54)

EC β0 = −38.3411 (9.53) σ2 = 464.6207 ρ = 0.3445 (0.7) 2791.3
β1 = 0.3737 (0.12)
β2 = −23.8374 (3.24)

UN1 β0 = −25.3785 (9.83) σ2
1 = 508.6234 2824.2

β1 = 0.2100 (0.12) σ2
2 = 429.6811

β2 = −24.6771 (2.53) σ2
3 = 442.6674

UN2 β0 = −31.7091 (9.66) σ2
1 = 506.3417 σ21 = 175.2339 (321.4221) 2794.5

β1 = 0.2866 (0.12) σ2
2 = 416.4010 σ32 = 74.3218 (136.3245)

β2 = −24.2122 (2.88) σ2
3 = 446.1486

AR1 β0 = −34.6805 (9.22) σ2 = 464.4223 ρ = 0.3636 (0.7) 2795.2
β1 = 0.3247 (0.12)
β2 = −24.4292 (3.11)

TOEP β0 = −37.7984 (9.55) σ2 = 464.8787 ρ1 = 0.3651 (0.7) 2792.9
β1 = 0.3662 (0.12) ρ2 = 0.3060 (0.5612)
β2 = −23.9514 (3.24)

TOEP2 β0 = −31.2468 (9.66) σ2 = 455.5407 ρ1 = 0.2802 (0.7) 2801.3
β1 = 0.2811 (0.12)
β2 = −24.6771 (2.89)

2. Data of non-pregnant state women

This data set containing times series of medium length (N = 6) is obtained
by including all blood glucose tests from the six fasting and one-hour-post-
fasting from 53 non-pregnant women. There are 318 (6 × 53) observations
coming from M = 53 subjects each repeatedly measured N = 6 times.
The dependent variable is again Y and the only independent variable is
X1. The means for Y and X1 over 318 observations are -14.39 and 79.72
respectively. Table 4 reports that parameter estimates for models with
J = 7 different covariance matrices are all significant and the best model
is TOEP according to AIC. Similarly by setting the parameter estimates
as true values for I = 7 different covariance matrices, we simulate K = 200
data sets (or totally 1400 data sets) each having 53 normal vectors of N = 6
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in length. Next, we fit each of the 1400 data sets to models with J = 7
different covariance matrices. From Table 5, the ranks R1j and R3j are
similar to those of the previous data with N = 3 and low level of ρ, according
to MSE and AIC respectively but they are quite different according to ratio
of SD and SE. Moreover the first and second choices of robust covariance
structure are identical to those of the previous data. Again, AR1 generally
performs well according to both MSE and AIC.

Table 3: Ranks of the three criteria for the blood glucose data (N = 3)

RMSEij SIM EC UN1 UN2 AR1 TOEP TOEP2

Original low level of ρ∑7
i=1 RMSEij 88.5 68.5 105.5 92.5 60 82 63

R1j 5 3 7 6 1 4 2∑7
i=1 Ratioij 42 25 39 22 24 17 27

R2j 7 4 6 2 3 1 5∑7
i=1 AICij 32 19 45 34 19 27 20

R3j 5 1.5 7 6 1.5 4 3∑3
h=1 Rhj 17 8.5 20 14 5.5 9 10

Rj 6 2 7 5 1 3 4

Adjusted high level of ρ∑7
i=1 RMSEij 100 74 134 95 57 54 71.5

R1j 6 4 7 5 2 1 3∑7
i=1 Ratioij 40 27 38 20 24 14 33

R2j 7 4 6 2 3 1 5∑7
i=1 AICij 34 24 44 19 24 24 27

R3j 6 3 7 1 3 3 5∑3
h=1 Rhj 19 11 20 8 8 5 13

Rj 6 4 7 2.5 2.5 1 5
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Table 4: Parameter estimates for models with different covariance structures
for the blood glucose data (N = 6 with an original low level of ρ)

Type Estimates (S.E.) Variance Covariance/correlation AIC
SIM β0 = −24.2516 (9.68) σ2 = 436.73 2835.9

β1 = 0.1237 (0.12)
EC β0 = −36.1006 (9.68) σ2 = 316.63 ρ = 0.3920 2798.9

β1 = 0.2723 (0.12)
UN1 β0 = −24.3246 (9.17) σ2

1 = 293.64 2840.7
β1 = 0.1354 (0.11) σ2

4 = 432.82
σ2
2 = 443.97

σ2
5 = 529.53

σ2
3 = 402.06

σ2
6 = 521.74

UN2 β0 = −35.9661 (8.83) σ2
1 = 289.00 σ21 = 133.93 2820.7

β1 = 0.2860 (0.11) σ2
4 = 443.72 σ54 = 92.10

σ2
2 = 426.97 σ32 = 29.33

σ2
5 = 499.70 σ65 = 213.88

σ2
3 = 402.85 σ43 = 125.23

σ2
6 = 533.08

AR1 β0 = −40.7659 (9.45) σ2 = 440.42 ρ = 0.3766 2799.5
β1 = 0.3313 (0.12)

TOEP β0 = −40.8435 (9.50) σ2 = 445.22 ρ1 = 0.3911 2797.1
β1 = 0.3662 (0.12) ρ2 = 0.3179

ρ3 = 0.2618
ρ4 = 0.1627
ρ5 = 0.0777

TOEP2 β0 = −36.6278 (9.52) σ2 = 427.91 ρ1 = 0.2668 2810.2
β1 = 0.2791 (0.12)

Table 5: Ranks of the three criteria for the blood glucose data (N = 6)

RMSEij SIM EC UN1 UN2 AR1 TOEP TOEP2
Original low level of ρ

P7
i=1 RMSEij 74.5 53 77 62.5 35 53 37

R1j 6 3.5 7 5 1 3.5 2
P7

i=1 Ratioij 29 19 33 36 29 21 29
R2j 4 1 6 7 4 2 4
P7

i=1 AICij 32 21 40 35 20 27 21
R3j 5 2.5 7 6 1 4 2.5
P3

h=1 Rankhj 15 7 20 18 6 9.5 8.5
Rj 5 2 7 6 1 4 3

4.2 Plasma citrate concentration data

An experiment involving 10 subjects (Andrews and Herzberg, 1985, P.237)
was carried out to study the variation of plasma citrate concentration during a
day. The concentration of citrate in plasma (in µmol per litre) of each subject
was measured hourly from 8am to 9pm (N = 14) during a day. Meals were given
at 8am, at noon and at 5pm. The mean concentration over the complete set of
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Table 6: Parameter estimates for models with different covariance structures
for the citrate concentration data (N = 14 with an original low level and an
adjusted high level of ρ)

Type Estimates (S.E.) Variance Covariance/correlation AIC
(adjusted)

SIM β0 = 134.23 (4.23) σ2 = 402.43 1228.2
β1 = −10.086 (4.31)
β2 = −1.6959 (0.44)

EC β0 = 134.23 (5.59) σ2 = 382.61 ρ = 0.6247 (0.3) 1148.6
β1 = −10.086 (2.90)
β2 = −1.6959 (0.30)

UN1 β0 = 131.94 (4.09) σ2
1 = 408.21 2840.7

β1 = −10.663 (3.98) σ2
2 = 536.82

β2 = −1.4439 (0.41) σ2
3 = 681.54

σ2
4 = 606.36

σ2
5 = 635.54

σ2
6 = 226.64

σ2
7 = 258.51

σ2
8 = 356.57

σ2
9 = 422.88

σ2
10 = 221.07

σ2
11 = 464.94

σ2
12 = 388.46

σ2
13 = 197.22

σ2
14 = 235.81

UN2 β0 = 130.78 (4.70) σ2
1 = 417.73 σ2,1 = 251.31 (114.99) 1173.3

β1 = −14.295 (0.60) σ2
2 = 351.73 σ3,2 = 358.28 (163.94)

β2 = −1.1267 (0.48) σ2
3 = 777.91 σ4,3 = 186.51 (85.34)

σ2
4 = 538.59 σ5,4 = 417.47 (191.02)

σ2
5 = 696.06 σ6,5 = 57.97 (26.52)

σ2
6 = 287.85 σ7,6 = 160.18 (73.29)

σ2
7 = 174.78 σ8,7 = 133.39 (61.04)

σ2
8 = 332.27 σ 9, 8 = 95.64( 43.76)

σ2
9 = 402.57 σ10, 9 = 198.88 (91.00)

σ2
10 = 247.51 σ11,10 = −90.06 (−41.21)

σ2
11 = 677.45 σ12,11 = 375.17 (163.43)

σ2
12 = 361.59 σ13,12 = −6.68 (−3.06)

σ2
13 = 169.84 σ14,13 = 55.69 (25.48)

σ2
14 = 533.08
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Table 6 (continued): Parameter estimates for models with different covariance
structures for the citrate concentration data (N = 14 with an original low level
and an adjusted high level of ρ)

Type Estimates (S.E.) Variance Covariance/correlation AIC
(adjusted)

AR1 β0 = 130.88 (6.33) σ2 = 407.80 ρ = 0.7026 (0.3) 1142.4
β1 = −7.661 (2.36)
β2 = −1.4208 (0.68)

TOEP β0 = 136.22(6.13) σ2 = 474.44 ρ1 = 0.7449 (0.3) 1136.5
β1 = −7.971(2.40) ρ2 = 0.6441 (0.2594)
β2 = −1.8164(0.48) ρ3 = 0.5815 (0.2342)

ρ4 = 0.5259 (0.2118)
ρ5 = 0.5714 (0.2301)
ρ6 = 0.6036 (0.2431)
ρ7 = 0.6194 (0.2495)
ρ 8 = 0.6302 (0.2538)
ρ 9 = 0.6405 (0.2579)
ρ10 = 0.5049 (0.2034)
ρ11 = 0.3984 (0.1605)
ρ12 = 0.2726 (0.1098)
ρ13 = 0.0899 (0.0362)

TOEP2 β0 = 131.87 (4.53) σ2 = 349.46 ρ1 = 0.4230 (0.3) 1176.9
β1 = −6.915 (2.83)
β2 = −1.5244 (0.51)

140 observations is 119.35 µmol per litre whereas it is 115.10 µmol per litre over
the 30 meal times.

The regression models with 2 covariates, namely indicator of meal time (Meal)
and time from 1 to 14 (Time), and using each of the J = 7 covariance structures
are fitted to the data. Table 6 shows that all parameter estimates are significant
and the best model is again TOEP according to AIC. Using the I = 7 sets of
parameter estimates as true values, we simulate K = 200 data sets (or totally
1400 data sets) each having 10 normal vectors of N = 14 in length. Lastly we fit
each of the 1400 data sets to models with J = 7 different covariance structures.

Again, we repeat the whole simulation experiment with an adjusted set of true
values of which β′ remain the same but the level of serial correlation is lower: ρ′

in AR1 and EC and ρ′1 in TOEP and TOEP2 equal to 0.3 and σ′
ij in UN2 and ρ′i

in TOEP are similarly calculated as in the blood glucose data when N = 3. From
Table 7, across levels of ρ (0.7 and 0.7 in AR1 say), the ranks R1j and R2j are
very similar according to MSE and ratio of SD and SE but are quite different
according to AIC. The table also reports the first and second choices of robust
covariance structure according to the total rank Rj using all the three criteria.
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Across levels of ρ, the choices are not the same but SIM and EC generally perform
well according to MSE. Hence when our objective is parameter estimation, SIM
and EC are good choices of robust covariance structure.

Table 7: Ranks of the three criteria for the citrate concentration data (N = 14)

Original low level of ρ∑7
i=1 RMSEij 57.5 57.5 86 135 74 107 71

R1j 1.5 1.5 5 7 4 6 3∑7
i=1 Ratioij 29 21 41 45 16 23 21

R2j 4 2.5 6 7 1 5 2.5∑7
i=1 AICij 31 20 44 40 17.5 25 18.5

R3j 5 3 7 6 1 4 2∑3
h=1 Rankhj 10.5 7 18 20 6 15 7.5

Rj 4 2 6 7 1 5 3
Adjusted low level of ρ∑8

i=1 RMSEij 51 51 89 147 63 120 67
R1j 1.5 1.5 5 7 3 6 4∑8

i=1 Ratioij 23 14 38 49 17 35 20
R2j 4 1 6 7 2 5 3∑8

i=1 AICij 38 15 27 19 43 45 9
R3j 5 2 4 3 6 7 1∑3

h=1 Rhj 10.5 4.5 15 17 11 18 8
Rj 3 1 5 6 4 7 2

5. Results

The first two simulation experiments using the blood glucose data consider
time series of short and medium length and of weaker serial correlation (ρ = 0.36
and 0.38 in AR1 for N = 3 and 6 respectively) whereas the third simulation ex-
periment using plasma citrate concentration data considers longer time series of
stronger serial correlation (N = 14 and ρ = 0.70 in AR1). In order to study the
interaction effect of the length of the time series and the strength of the serial cor-
relation on the choice of robust covariance structure, two more simulation studies
have been done with level of ρ in AR1 set to 0.7 and 0.35 for the two data sets
containing time series of N = 3 and N = 14 respectively. Table 8 summarizes the
first and second choices of robust covariance structure according to all the three
criteria including MSE, ratio of SD to SE and AIC in a 2×2 contingency table.
For data of relatively shorter time series and with weaker serial correlation, AR1
is the most robust structure and EC is also good. Both structures assume a con-
stant variance and a consistent correlation between pairs of lag-k observations,
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given by ρk and ρ respectively. Models adopting the two covariance structures
describe well the gradual decline of serial correlation across ‘lag’. For data with
stronger serial correlation, TOEP and AR1 (or UN2) rank the first and second
respectively. Their lag-k correlations, ρk and ρk (or non-zero lag-1) respectively,
drop to zero across ‘lag’ at a rate which depends more on the data. For data of
relatively longer time series with stronger serial correlation, AR1 and EC are the
first and second choices of robust covariance structure. They are exactly iden-
tical to those of shorter time series with weaker serial correlation. Their lag-k
correlations, ρk and ρ respectively, are simple with less parameters and non-zero
with constant (ρ) or consistent (ρk) correlations between pairs of observations.
On the other hand, for data with weaker serial correlation, EC is the most robust
structure and TOEP2 is also good. The two correlation structures model corre-
lation between pairs of lag-k observations by a constant ρ and a non-zero lag-1
correlation (ρ1 6= 0) respectively. They describe the decline of correlation across
‘lag’. Note also that SIM, UN1 and UN2 are usually worse especially for data
containing longer time series or with stronger serial correlation because they as-
sume non-constant variances as well as zero or non-constant covariances resulting
in a large number of parameters. On the other hand, robust structures generally
assume constant variances and consistent covariances between observations of a
given time lag.

Table 8: Summary of choices for robust covariance structure cross-classified by the
length of time series and strength of serial correlation

Serial correlatlon Low (ρ ≈ 0.35 in AR1) High (ρ ≈ 0.70 in AR1)

Length of First Second First Second
time series choice choice choice choice

Short (N = 3) AR1 EC TOEP AR1 or UN2
Long (N = 14) EC TOEP2 AR1 EC

6. Conclusion

Results suggest that both the length of time series and the strength of serial
correlation affect the choice of robust covariance structure. For data containing
relatively shorter time series, AR1 is the choice of the most robust covariance
structure irrespective of the strength of serial correlation. AR1 is simple with
only two parameters, the constant variance σ2 and the auto-regressive parameter
ρ which describes the strength of serial correlation. Moreover, EC and TOEP
are also good choices for data of weak and strong serial correlation respectively.
AR1, EC and TOEP all have Pv = Pc = 1 but with different assumptions on
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lag-k correlation, namely ρk, ρ and ρk respectively. For data of longer time
series, modeling the covariance structure becomes more difficult because of the
possibility of more complicate covariance structures. Simulation experiments
show that EC is the most robust choice irrespective of the strength of serial
correlation. Moreover, AR1 and TOEP2 are also good choices for data of strong
and weak serial correlation respectively. The three chosen structures, namely EC,
AR1 and TOEP2 are similar to those of short time series except that TOEP is
replaced by TOEP2 with less parameters. In general, robust covariance structures
for data containing longer time series have constant variances and covariances for
observations of equal time lag and zero covariances for observations of higher
time lag.
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