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Abstract: Registrations in epidemiological studies suffer from incomplete-
ness, thus a general consensus is to use capture-recapture models. Inclusion
of covariates which relate to the capture probabilities has been shown to
improve the estimate of population size. The covariates used have to be
measured by all the registrations. In this article, we show how multiple im-
putation can be used in the capture-recapture problem when some lists do
not measure some of the covariates or alternatively if some covariates are
unobserved for some individuals. The approach is then applied to data on
neural tube defects from the Netherlands.
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1. Introduction

The estimation of the population size based on multiple incomplete lists has
a long history (Chao et al., 2001, Schwarz and Seber, 1999). The advantages of
using these methods as a substitute for direct counting in epidemiology has been
strongly emphasized (International Working Group for Disease Monitoring and
Forecasting, 1995). The basic assumptions are that the population being esti-
mated is closed, i.e., births, deaths and migrations are negligible, the individuals
can be matched without error, and for the traditional approach an additional as-
sumption is that all individuals have the same probability of being ascertained by
a registration. In recent times this additional assumption is relaxed by allowing
the capture probabilities to depend on covariate information or by allowing some
of the registrations to be dependent.

A serious problem in capture-recapture models with individual level covari-
ates occurs when the data are missing on one or more covariates which define
heterogeneous catchability. Item missing values are usually handled by imputa-
tion with a reasonable proxy (Zwane and Van der Heijden, 2004) or by excluding
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those observations (Hwang and Huang, 2003; Wang and Yip, 2003). The missing-
data problem is more acute when some of the registrations do not contain some
of the covariates which define heterogeneous catchability. In epidemiology and
public health contexts this is a common problem as the registrations used are
usually compiled for different administrative purposes. The standard approach
is to simply drop these covariates. On top of being a waste of data, this prac-
tice could lead to biases (invalid results) if the dropped covariates are sources of
heterogeneity. As a result it is of interest to incorporate missing data techniques
into capture-recapture studies (Wang and Yip, 2003). A related problem is when
the lists do not measure the same population (Zwane et al., 2004).

This problem confronted us in the estimation of the prevalence of neural tube
defects in the Netherlands using the capture-recapture (CRC) methodology. The
data utilized three overlapping registrations, where the gender of child and deliv-
ery weight are measured in all the registrations. Parity of the child, nationality
(proxy for ethnicity) and the age of the mother are measured in only two of the
registrations. Under certain assumptions, two valid approaches can be used to
estimate the population size, (i) use all covariates and the two lists where all
covariates are measured, or (ii) use all lists and the covariates measured in all
lists. In the first approach, one assumes that given all covariates the lists are
independent, whilst in the second approach dependencies between lists can be
entertained. As a result these two approaches can result in different estimates of
the population size. If, given all covariates some of the lists are dependent and if
all covariates influence inclusion to all lists, both these approaches will be biased.

Due to the arbitrary nature of choosing either estimating approach and that
these approaches are only valid under certain assumptions, it is preferable to
formulate a model that utilizes all covariates and all lists. In the CRC prob-
lem, Zwane and Van der Heijen (2007) considered a log-linear model to describe
the multinomial probabilities among discrete (and discretized) covariates and
suggested the use of the EM algorithm (Little and Rubin, 1987) for likelihood
maximization when some covariates do not appear in some registrations. This ap-
proach can be used for our data but then we would ignore part of the information
available in the continuous covariates.

The EM algorithm can in principle be used for capture-recapture models
with continuous covariates, but the expectation involves complex numerical in-
tegration. In semiparametric capture-recapture models in continuous-time Wang
(2005) used the Monte Carlo EM (Wei and Tanner, 1990) to estimate the param-
eters and in turn the population size. In this paper we prefer the use of multiple
imputation (MI). The main advantage of MI over maximum likelihood methods
is that it is computationally much simpler for most practical situations (Sinharay
et al., 2001). MI was developed in the context of non-response in sample surveys,
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for handling missing data with arbitrary patterns of missing data on both con-
tinuous and categorical covariates, but has been applied successfully in a broad
variety of settings (Rubin 1987, 1996). MI has been used extensively in similar
problems, i.e., problems utilizing different surveys or registrations (Belin et al..
1993; Gelman et al., 1998; Raghunathan and Sciskovik, 1998). In all these cases
MI was found to perform well. For example, Raghunathan and Sciskovik (1998)
compared the use of MI in case control studies where the exposure variable is
available from several sources to the use of näıve methods (where the exposure
variable comes from one source), and they found that using several sources is
better in terms of bias, mean square error and confidence coverage.

The rest of the paper is organized into five sections. In Section 2 we briefly
discuss the neural tube defects data set. We discuss the multinomial logit model
for analyzing CRC data with continuous covariates in Section 3. Section 4 in-
troduces multiple imputation in the capture-recapture problem. In Section 5, we
report an analysis of the neural tube defects data set presented in Section 2, and
conclude with a discussion in Section 6.

2. Neural Tube Defects Data

The problem that triggered this work is the estimation of the number of
children born with a neural tube defect in the Netherlands from 2000. The data
are gathered routinely on children born with a neural tube defects (NTD’s) in the
Netherlands by midwives, obstetricians, or paediatric units (Van der Pal et al.,
2002). For this analysis we utilized three incomplete but overlapping databases
which we describe briefly;

1. The Dutch Perinatal Database 1 (LV R1): This is a pregnancy and birth
registry of low risk pregnancies and births.

2. The Dutch Perinatal Database 2 (LV R2): Registers data concerning the
birth of a child in secondary care. If a woman is referred from primary care
to secondary care she may be registered in LV R1 and LV R2.

3. The National Neonatal Database (LNR): Contains information on “all”
admissions and re-admissions of newborns to paediatric departments within
the first 28 days of life.

In each of these registries, the gender and the birth (or delivery) weight of the
child are recorded (fully overlapping covariates). In LV R1 and LV R2, there
is also information on parity of child, ethnicity/nationality and the age of the
mother which are not measured in LNR. A summary of the data is shown in
table 1.
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Table 1: Neural tube defects data : 2000

Ascertainment history†

Covariates 100 010 001‡ 110 101 011 111 Total
Gender

Male 19 14 7 11 5 10 3 69
Female 24 23 9 13 2 7 1 79

Total 43 37 16 24 7 17 4 148
Birth weight

Mean 3.21 2.34 2.74 2.15 3.36 2.73 3.05 2.72
Ethnicity/Nationality

Dutch 34 27 ? 21 4 16 2 104
Non-Dutch 9 10 ? 3 3 1 2 28

Missing 0 0 16 0 0 0 0 16
Parity

Mean 1.67 2.14 NA 1.54 2.29 1.59 2.00 1.81
Age of the mother

Mean 30.02 30.16 NA 29.25 30.29 28.24 29.25 29.68

†The first element of the ascertainment profile refers to LV R1, the second to
LV R2, and the third to LNR (1 is present, 0 is absent).
‡Observations listed in ‘LNR only’ have a value for birth weight only.

The variables in table 1 are known (or believed) to be risk factors for neural
tube defects (Olney and Mulonnare, 1998; Davidoff et al., 2002; Vieira, 2004)
or have been used successfully in the capture-recapture methodology (Madigan
and York, 1997). We had no reason to believe that the gender of the child and
parity influence the capture probability. Note that we assume that parity doesn’t
influence the capture probability even though women having second or later births
can spend less time in maternity units compared to first-time mothers. This is
based on the assumption that conditional on a child having an NTD (where safety
of the child is paramount) first-time mothers do not necessarily spend more time
in maternity units.

3. The Multinomial Logit Model in the CRC Problem

Assume that the true population size is N and the individuals are indexed by i
(i = 1, 2, ..., N) of which n are ascertained by at least one of S registrations. The
inclusion profile for individual i is the vector wi = [i1i2 · · · iS ], which is a series of
binary variables with 1 denoting ascertained and 0 otherwise. The ascertainment
profile wi can be redefined as a nominal categorical variable Yi with K = 2S − 1
levels, indexed by k (k = 1, · · · ,K) with individual i falling in only one of the
categories.

Now assume that for individual i there are covariate vectors xi and zi of length
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p and q respectively, where xi are the covariates observed in all the registrations
and zi are the covariates not observed in all the registrations. Denoting the
multinomial logit for individual i as η′i = [η1(xi, zi), η2(xi, zi), ..., ηK(xi, zi)], the
category probabilities are then given by,

P(Yi = k|xi,zi) = exp[ηk(xi,zi)]/
K∑

r=1

exp[ηr(xi, zi)]. (3.1)

This model has to be constrained in some way for it to be used in the capture-
recapture problem (Zwane and Van der Heijden, 2003, 2004). Alho (1990) and
Huggins (1989) constrained the logits such that the lists are independent at the
individual level. After fitting the model the parameters can be used to estimate
the probability that an individual is registered or listed at least once. Denoting
this probability by φi (the estimated probability is denoted by φ̂i), the estimate
of the population size is

N̂ =
n∑

i=1

N̂i =
n∑

i=1

1

φ̂i

,

where N̂i is the contribution of individual i to the estimate of the population size
(Huggins, 1989).

Rather than use (3.1), the current standard is to use only the covariates
observed in all lists, that is

P(Yi = k|xi) = exp[ηk(xi)]/
K∑

r=1

exp[ηr(xi)]. (3.2)

Equation (3.2) will result in a biased estimate of the population size if the covari-
ates in zi are related to the inclusion probabilities. In this article we will complete
the data set using the multiple imputation approach described in section 4 such
that all covariates and lists are utilized.

4. Multiple Imputation in the CRC Problem

In this section, we will briefly describe the idea of multiple imputation meth-
ods. Multiple imputation is now standard in statistical literature and thus we will
highlight only the most important points (Rubin, 1996). MI involves three steps:
1) imputing the data under an appropriate model and repeating the imputation
to obtain m copies of the filled-in data set; 2) analyzing each data set separately
to obtain the desired parameter estimates and standard errors; 3) combining the
results from the m parameter estimates by computing the mean of the m param-
eter estimates and a variance estimate that includes both within-imputation and
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an across-imputation components. Below we describe how the multiply imputed
data sets are created and how the analysis of such data can be performed to
result in one estimate of the population size and its standard error.

4.1 Creating multiple imputed data sets

Multiple imputation aims at imputing the missing values in zi such that they
can also be used in generally available software, like the multinomial logit model.
Possible multivariate models for the data that can be used to draw the m plausible
values for each missing item in the data set are the multivariate normal model,
the general location model, or by using “compound conditional specification”. A
number of software programs are available implementing these models (Horton
and Lipsiz, 2001). Below we highlight the features of each of these approaches
and situations where they can be used for creating the multiple imputations.

Multivariate normal model

A multivariate normal model with arbitrary covariance and correlation struc-
ture can be used for the imputation. In the capture-recapture problem this
approach can be used when there are no missing values in categorical variables.
The variables forming the inclusion profiles are binary, but because they have no
missings they can enter the model as continuous covariates (Schafer, 1997). Note
that in some cases even in the presence of missing binary or ordinal variables the
multivariate normal model can still be used, but as noted by Horton et al. (2003)
this practice can sometimes lead to a bias.

General location model

This model was introduced by Olkin and Tate (1961) to characterize the joint
distribution for data containing a mix of categorical and continuous covariates.
This model assumes a multinomial distribution for the categorical variables and
a multivariate normal distribution for the continuous variables within each cell of
the contingency table. Belin et al. (1999) gives a discussion on the performance
of the general location model with an ignorable missing data assumption in a
mental health services study. They also give several considerations that have to
be taken into account before using the general location model.

Compound conditional specification

Also called “incompatible Gibbs sampling”; this approach specifies a different
regression model for each variable (Van Buuren and Oudsjoorn, 1999; Raghu-
nathan et al., 2001). For categorical variables, the model could be logistic or
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multinomial and for continuous variables, the linear regression model is suffi-
cient. Imputation is done on an equation by equation basis. The problem of
dimensionality of multivariate regression is reduced.

4.2 Selection of covariates

The registrations used in capture-recapture problems usually contain a wealth
of covariates and these can also be used for imputations. Ideally all variables
have to be used in the imputation model to make the missing at random (MAR)
assumption more plausible (Rubin, 1996). In some instances, especially in the
general location model use of a large number of categorical covariates results
in an unestimable model. Belin et al. (1999) illustrated an approach which is
a trade-off between trying to accommodate more detail in the incomplete data
model and the ability to estimate parameters of the model.

4.3 Analysis

Once the model has been chosen and variables selected, the model can be
used to generate via a random sampling procedure m imputed values for the
missing data points, thus creating m complete data sets. For each completed
data set an estimate of the population size (N̂d, where d = 1, · · · ,m) and its
associated variance which we denote by v̂ar[N̂d] can be computed using capture-
recapture models with continuous covariates (Alho, 1990; Zwane and Van der
Heijden, 2004). These estimates can then be combined using the approach of
Rubin (1987) to arrive at a single estimate of the population size (N̂) given by,

N̂ =
1
m

m∑
d=1

N̂d (4.1)

and an MI variance, v̂ar[N̂ ] given by,

v̂ar[N̂ ] =
1
m

m∑
d=1

v̂ar[N̂d] +
[
1 +

1
m

] [
1

m − 1

] m∑
d=1

(
N̂d − N̂

)2
. (4.2)

This variance includes two parts: the average within-imputation variance, which
is the first part of (4.2), and the between-imputation variance.

4.4 Model selection

Most of our presentation thus far assumed that there is a single true model
which is usually arrived at by some model search criterion. A cause for concern
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in capture-recapture models is that estimated population sizes for models with
similar fits can be different, and thus basing inferences on a single model is
(Hoeting et al., 1999). To overcome this concern we propose to incorporate model
uncertainty into our estimates using the model averaging approach (Stanley and
Burnham, 1998). This approach allows for model selection uncertainty to be
incorporated into the standard errors and reduces bias in the parameter estimates
in cases when there are a number of models with similar Aikake Information
Criterion’s (AIC’s) with (substantially) different estimates of the population size
and/or their standard errors. As our model selection is based on the AIC, AIC
weights will be used in the model averaging process.

To compute the AIC weights we first compute the difference in AIC between
each model and the model with the lowest AIC as ∆i = AICi − AICmin, where
AICi and AICmin are the AIC’s for model i and the model with the lowest AIC
respectively. Using ∆i the AIC weights are

wi =
exp(−∆i/2)∑
j exp(−∆j/2)

where ‘exp(−∆i/2)’ is the likelihood of the model given the data (Burnham and
Anderson, 2002, Chapter 4.2). Using the weights the model averaged estimate of
the population size is N̂∗ =

∑
i wiN̂i where N̂i is the estimate of the population

size for model i. The variance of the estimate is given by,

v̂ar[N̂∗] =

[∑
i

wi

√
v̂ar[N̂i] + (N̂i − N̂∗)2

]2

.

In most cases not all the models are included in the estimation as most of them
will have insignificant weights. Burnham and Anderson (2002, 70-72) proposed
a rule-of-thumb where models with ∆i < 4 have substantial support and models
with 4 < ∆i < 7 have considerably less support. In our analysis the models
included in the model averaging are those with at least substantial support, that
is models with ∆i < 4.

In the analysis of multiply imputed data, we opt to create m + 1 imputed
datasets where the extra dataset is used for model selection (Allison, 2001). In
this case we use a somewhat conservative criteria (Allison, 2001) for models to
be included in the model averaging process. For this exercise we have considered
models with at least considerably less support from the data (Burnham and
Anderson, 2002, p.70-72). An alternative is to use the procedure for calculating
the complete-data log likelihood ratio (and corresponding p-value) for analysis
on multiple imputed data proposed by Meng and Rubin (1992). The ad hoc
approach is preferred due to its simplicity. However, the ad hoc approach might
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become misleading in situations where the missingness is severe; this scenario
requires investigation.

5. Application

The method presented was applied to the data from the neural tube defects
data set described in Section 2. In our imputation model we used all available
covariates, but consider only birth weight, ethnicity and the age of the mother
as covariates that can possibly have an effect on the inclusion probability. For
completeness we first present the results from the traditional approaches.

5.1 Traditional approach

In this section we present the estimates of the population size based on the two
valid traditional approaches. We first consider the models using all covariates and
the two lists (LV R1 and LV R2). The estimates from all possible models range
from 228 to 250. The model averaged estimate of the population size is 242 (SE
= 41.88, where SE denotes standard error). The log-based confidence interval
(Chao, 1987) is [183, 369]. All models excluding delivery weight do not have
support from the data.

We then consider models using all lists and delivery weight. Estimates from
these models range from 183 to 275. The model averaged estimate of the pop-
ulation size is 215 (SE = 43.23), implying the log-based confidence interval is
[168, 373].

It is evident that the model averaged estimates from these two approaches are
substantially different and it is not clear how one approach can be chosen over
the other. Using two lists, one can only assume independence at the individual
level but it is possible that this is fulfilled given the available covariates. With
three lists, dependencies can be modelled, but it is likely that the dropping of
covariates of heterogeneous catchability induces dependence resulting in biased
results. In the following section, imputation approaches are used to complete the
data set such that all features of the data are utilized.

5.2 Imputation

The difference between the estimate based on “all covariates and two lists”
and the estimate based on “all lists and delivery weight” shows that there is a
need for an approach which utilizes all lists and all covariates. In this section
we use imputation approaches to complete the data set, and then fit a model
which uses all covariates and all lists. For ease of exposition we only consider
models where the covariates enter linearly. A simple solution is conditional mean
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imputation, which is discussed in the next Section.

Conditional mean imputation

As the missingness occurs in only 11% (16/148 = 0.11) of the observations,
single imputation can give reasonable results (Harrell, 2001). We used the propor-
tion of women with children listed in LNR which is 0.214 as a proxy for ethnicity
to impute the missing values for observations listed in LNR only. The mean age
for women with children listed in LNR which is 28.9 was used to impute the age
of the mother for the observations listed in LNR only.

The model averaged estimate of the population size is 232 (SE = 59.29),
implying the log-based confidence interval is [171, 450]. This estimate is not that
different from the analysis utilizing the two lists (LV R1 and LV R2) all covariates
save for a higher upper confidence limit, but it is very different from the estimates
utilizing all lists and delivery weight. This might lead one to conclude that the
dependence between the lists is weak even though all the models with support
from the data in the imputed data set incorporate dependencies between the
lists. A feature common to both sets of analysis using all covariates is that
models including the age of the mother tend to have a higher estimate of the
population size.

A problem with mean imputation is that the standard errors are likely to be
underestimated. To avoid the underestimation of the standard errors we apply
multiple imputation in the next Section.

Multiple imputation

In this section we use multiple imputation techniques to analyze the neural
tube defects data set. The covariates with missing values to be used in our
analysis model are ethnicity, which is a binary covariate, and the age of the
mother which is a continuous covariate. As recommended by Horton et al. (2003)
it is preferable to use a discrete model even when confronted by a problem with
missings in only binary variables. The discrete model we use is the general
location model as implemented in the R (Ihaka and Gentleman, 1996) library
MIX (Schafer, 1997).

We used the EM and data augmentation (DA) algorithms in MIX to gener-
ate the posterior distribution of the parameters of the assumed model. Random
draws from the posterior distribution were then taken m = 10 times to generate
m = 10 complete data sets for the final analysis. As recommended the parameter
estimates from the EM algorithm are used as starting values for the DA algo-
rithm (Schafer, 1997). To ensure that the successive imputations are statistically
independent, the DA algorithm was run 27500 times and at every 2500 iterations
one of m + 1 = 11 imputations was selected.
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All possible models were fitted to the extra data set and the models with least
considerably less support from the data, or alternatively, the models with ∆i < 7
are shown in table 2.

Table 2: Estimates of population size for the all covariates models

Model Multiple Imputation
Design Covariate Selection Est.

Model 5 Matrix 2 Matrix 3 AIC Popu. s.e. 95 % C.I. 4

1 [12, 3] 1 + B 507.6 211 23.48 [179, 276]
2 [13, 2] 1 + B 508.0 199 16.23 [175, 241]
3 [13, 2] 1 + B + E 507.1 206 20.74 [177, 263]
4 [13, 2] 1 + B + E + A 506.6 222 31.27 [181, 312]
5 [1, 23] 1 + B 505.9 236 27.42 [196, 308]
6 [1, 23] 1 + B + E 509.3 236 27.44 [196, 308]
7 [12, 13] 1 + B 504.0 183 15.36 [163, 227]
8 [12, 13] 1 + B + E 503.2 213 58.83 [162, 444]
9 [12, 23] 1 + B + E + A 504.5 274 142.52 [169, 895]
10 [12, 23] 1 + B 506.3 275 100.97 [180, 649]
11 [13, 23] 1 + B 504.0 226 32.46 [184, 319]
12 [13, 23] 1 + B + E 504.3 238 41.35 [186, 360]
13 [13, 23] 1 + B + E + A 505.6 259 60.83 [189, 451]
14 [12, 13, 23] 1 + B 506.9 193 38.74 [158, 342]
15 [12, 13, 23] 1 + B + E 507.5 306 248.61 [166, 1557]

†The first element of the ascertainment profile refers to LV R1, the second to
LV R2, and the third to LNR (1 is present, 0 is absent).
‡Observations listed in ‘LNR only’ have a value for birth weight only.

Columns 4 in table 2 relates to the AIC of the data set used for model selection,
whilst the last three columns relate to the analysis of the rest of the data sets
combined using the methods discussed in section 4.3.

The model averaged estimate of the population size, using the AIC’s in ta-
ble 2 is 228 (SE = 64.10), implying the log-based confidence interval is [167, 476].
This estimate is marginally different from the estimate using all lists and and
birth weight, but also very different from the estimate using the two lists which
measure all available covariates (LV R1 and LV R2). The estimate also compares
favourably with the results using conditional imputation. What is evident from
the standard error and confidence interval is that using the multiple imputation
approach also adds noise to the analysis.

A question remains is the MAR assumption justified in this analysis. First as
noted by Zwane and Van der Heijden (2007) the MAR assumption is violated if
the true model is more complex than the most complex model that can be fitted
to the data. In our case, if the true model includes LV R1 : LV R2 : E : M then
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the MAR assumption is violated. We have no reason to believe that true model
includes this interaction and thus we believe the MAR assumption is justified.

In conclusion, for this problem using conditional mean imputation and MI
results in similar estimates of the population size but in the MI analysis there is
a added uncertainty in the estimate. Dependence between registrations plays a
big role as the estimates using all lists are comparable. All models with support
from the data include birth weight of the child and ethnicity and the age of the
mother do not seems to have a big influence in the estimate of the population
size. That said, as this information is not available ‘a priori’ it is advisable to
use the imputation approaches.

6. Concluding Remarks

In capture-recapture models it is desirable to include individual level covari-
ates to account for any differences in ascertainment by the registrations. When
these covariates are not measured by all registrations (or they contain missing
data), the commonly used approaches of dropping (or ignoring) these covariates
may give biased estimates of the population size. Multiple imputation is proposed
to handle the missing covariate problem in the capture-recapture models.

Our results show that mean imputation also performs well with respect to
the estimate of the population size but seemingly underestimates the standard
error, resulting in narrow confidence intervals. The estimate of the population size
from mean imputation is similar to the estimate derived from multiple imputation
because the proportion of observations with missing data is very low.

Multiple imputation is applicable to missing covariate problems with arbi-
trary missing data patterns and arbitrary number of covariates (the categorical
covariates do not necessarily have to be binary). Though our application is in
epidemiology with only three lists this approach is applicable to wide ranging
capture-recapture problems. Based on the results presented in the previous sec-
tions we can make a strong recommendation for the use of imputation in capture-
recapture models with missing covariates.

A concern in using capture-recapture methods for our data is that some babies
born with NTDs might not survive the initial 28 days of life. If children who die
during the first 28 days of life are less/more likely to appear in LNR the estimate
of the population size will be biased. In our analysis this bias is minimized by
controlling for birth weight and focusing only on live births. In essence we assume
that after controlling for birth weight, the probability of being missed by LNR
does not depend on whether a baby died within 28 days of life.

Although we have not evaluated the performance of MI in the capture-recapture
problem with missing covariates results show that the performance of MI is simi-
lar to likelihood methods that make similar arguments (see Schafer and Graham,
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2002, p. 170). If the same model is used for imputation and analysis then MI pro-
duces answers similar to likelihood analysis under the same model. In our case
the imputation model is more complex than the analysis model, and if parity
and gender of child are useful in predicting missing ethnicity and the age of the
mother then MI analysis improves in power (see Schafer and Graham, 2002, p.
170). Using these arguments we conclude that as confirmed by a simulation that
likelihood methods are unbiased if the data are MAR then MI will be unbiased
if the data are MAR.

In conclusion, we stress that for problems where standard maximum like-
lihood methods under the model of interest can be done easily for a data set
with missing values, see for example Zwane and Van der Heijden (2007), then
maximum likelihood methods will be preferable to MI because they are more effi-
cient (Sinharay et al., 2001). However maximum likelihood estimation is difficult
for problems with missing continuous covariates. Another advantage of MI is
that standard errors are available as part of model estimation, whilst if one uses
the EM algorithm the confidence intervals are computed using the (parametric)
bootstrap or other techniques (Zwane and Van der Heijden, 2007).
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