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Goodness-of-fit Test
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Abstract: Recently, He and Zhu (2003) derived an omnibus goodness-of-fit
test for linear or nonlinear quantile regression models based on a CUSUM
process of the gradient vector, and they suggested using a particular sim-
ulation method for determining critical values for their test statistic. But
despite the speed of modern computers, execution time can be high. One
goal in this note is to suggest a slight modification of their method that
eliminates the need for simulations among a collection of important and
commonly occurring situations. For a broader range of situations, the modi-
fication can be used to determine a critical value as a function of the sample
size (n), the number of predictors (q), and the quantile of interest (γ). This
is in contrast to the He and Zhu approach where the critical value is also a
function of the observed values of the q predictors. As a partial check on the
suggested modification in terms of controlling the Type I error probability,
simulations were performed for the same situations considered by He and
Zhu, and some additional simulations are reported for a much wider range
of situations.
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1. Introduction

Consider the random variables x1, . . . , xp, y having some unknown (p + 1)-
variate distribution. The usual regression setup is being considered where x1 = 1
and there are q = p − 1 predictors x2, . . . , xp. Numerous methods have been
proposed for testing

H0 : E(y|x) = g(x, θ)

for some unknown parameter θ and some specified function g(X, θ), which in-
clude the classic Kolmogorov-Smirnov test, the Cramer-von Mises statistic, and
likelihood ratio statistics. More recent proposals have been given by Härdle and
Mammen (1993), González-Manteiga and Cao (1993), Hong and White (1995)
and Hart (1997).
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In recent years, there has been a growing interest in quantile regression, mean-
ing that rather than focus on E(y|x), the goal is to model the conditional γ quan-
tile of y given x (e.g., Hahn, 1995; Koenker. & Xiao, 2002; He & Shao, 1996;
Zheng, 1998). Such methods add a new and more detailed perspective regard-
ing associations. As for testing the fit of a particular quantile regression model,
Zheng (1998) derived a test that uses a kernel estimate of the conditional mean of
I(y ≤ g(x) − γ) and Fan, Zhang and Zhang (2001) used a generalized likelihood
ratio statistic that uses a smoothing-based method that can depend critically on
how the smoothing parameter is chosen. (For another approach based on kernel
smoothing, see Horowitz & Spokoiny, 2002.) Yet another approach is to use a
CUSUM process based on the residuals (e.g., Stute, 1997; also see Bierens and
Ploberger, 1997; Stute, Thies & Zhu, 1998; Stute & Zhu, 2002; Zhu, 2003). More
recently, He and Zhu (2003) derived an approach based on quantile regression
that uses instead a vector-weighted cusum process of the gradient vector, the
practical point being that it can be made more sensitive to departures from the
model.

He and Zhu (2003) suggest a simulation method for approximating a p-value
or α-level critical value when using their the test statistic. In effect, their estimate
of the p-value is a function of the sample size n, the number of predictors q,
the quantile of interest γ, and the observed values of the covariates, x. They
suggest how the number of iterations used in simulations might be reduced, but
in practice a large number of replications might still be needed. (On the author’s
SUNBLADE 150 computer, even with n = 20, execution time can exceed 3
minutes, and execution time increases rapidly as n gets large. With n = 200
execution time can exceed 40 minutes.)

There are two goals in this note. The first is to suggest a simple modification of
the He and Zhu method that is aimed at eliminating the need for any simulations
when dealing with the commonly occurring situations where the goal is to test the
fit of a linear model with q ≤ 6, n ≤ 400, γ = .5 and when the level of the test is
chosen to be .10, .05, .025 or .01. When dealing with other values for q, n and γ,
simulations are still needed to estimate a critical value, but based on the results
reported here, it appears that this must be done only once for given values of n,
q and γ. That is, the results given here suggest that generally, it is not necessary
to assume that critical values are also a function of the observed covariates. The
second goal in this paper is to report the results of a more extensive simulation
study, compared to the simulation study by He and Zhu, regarding how well the
method controls the probability of a Type I error. A related goal is to provide
some indirect evidence that when the He and Zhu method is applied, the actual
level of their approach is relatively insensitive to changes in the design space.
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2. Review of the He and Zhu Method

In its more general form, He and Zhu (2003) test the hypothesis that x and
y can be modeled by

y = g(x, θ) + s(x)ε,

where θ ∈ Rp is an unknown parameter, g is a given function except for the
parameter θ, ε is a random variable having γth quantile 0, and s(x) is a scale
function that is consistently estimable. The focus here is on the important special
case where the goal is to test the hypothesis that x and y can be modeled by

y = x′β + (x′τ)ε. (2.1)

That is, the errors are iid except for a linear scale x′τ .
Given a set of observations {(xi, y), i = 1, . . . n}, β is estimated by minimizing∑

ργ(yi − x′
iβ),

where ργ(r) = γr+ + (1− γ)r−, with r+ as the positive part and r− the negative
part of r. The solution can be found via linear programming (e.g., Koenker and
d’Orey, 1987) and easy-to-use software is available within S-Plus and R. The
resulting estimate of β, for given γ, is denoted by β̂.

Following He and Zhu, for any x, t ∈ Rp, x ≤ t if and only if each component
of x is less than or equal to each component of t. Let ψ(r) = γI(r > 0) + (γ −
1)I(r < 0) be the derivative of ργ , ri = yi − x′

iβ̂, and let

Rn(t) = n−1/2
n∑

j=1

ψ(rj)xjI(xj ≤ t).

Their test statistic is

Tn = max
‖a‖=1

n−1
∑

(a′Rn(xj))2, (2.2)

the largest eigenvalue of n−1
∑

Rn(xi)R′
n(xi). What is required is an estimate

of the null distribution of Tn, and He and Zhu describe a simulation method that,
as previously indicated, is based in part on the xi values. Their approximation,
in the more general setting considered in their paper, is to use simulations based
on

R∗(t) = n−1/2
n∑

j=1

ωj{I(xj ≤ t)ġ(xj , θ̂) − Sn(t)ġ(xj , θ̂)},

where ġ(xj , θ̂) is the partial derivative of g with respect to θ,

Sn(t) = n−1
∑

ġ(xj , θ̂)ġ′(xj , θ̂)I(xj ≤ t),
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by assumption the design has been normalized so that n−1
∑

ġ(xj , θ̂)ġ′(xj , θ̂) −
I = o(1), and where the random variable ωj takes the values (γ, −γ, 1−γ, γ−1)
with probability ((1− γ)/2, (1− γ)/2, γ/2, γ/2). A reference distribution for Tn

is simulated by generating R∗(t) and then computing the largest eigenvalue of
n−1

∑
R∗

n(xi)R∗′
n (xi).

3. The Proposed Simplification

Attention is focused on the model given by (1) and it is still assumed that the
design has been normalized so that n−1

∑
xjx′

j − I = o(1). A simple strategy
is to determine a critical value when both x (prior to being normalized) and y
have normal distributions and then use this critical value when the normality
assumption is violated, thus avoiding the need for simulations. (In essence, this
is the same strategy used by Gosset to derive Student’s T test.) However, in the
simulations reported here, this approach was found to be unsatisfactory. When
the marginal distributions have heavy-tails, the Type I error probability can
exceed .085 when testing at the .05 level with n = 20 or 50. The main result here
is that this problem was eliminated by modifying slightly the partial ordering
among the design points used by He and Zhu.

Consider

Rn(xi) = n−1/2
n∑

k=1

ψ(rk)xkI(xk ≤ xi).

For fixed j, let Uij be the ranks of the n values in the jth column of x, j = 2, . . . , q.
Let Fi = max Uij , the maximum being taken over j = 2, . . . , q. If xk ≤ xi, then
Fk ≤ Fi. To see this, let Ui = (Ui2, . . . , Uiq) and note that xk ≤ xi implies
that Uk ≤ Ui. But Uk ≤ Ui means in particular that Fk ≤ Fi. It follows that
the sum used to compute Rn(xi) includes all terms for which Fk ≤ Fi. And if
Fk > Fi, the term is not included. Let

Wi = n−1/2
n∑

k=1

ψ(rk)xkI(Fk ≤ Fi),

and let Cn be the largest eigenvalue of

Z =
1
n

∑
WiW′

i.

Although very similar to the He and Zhu test statistic, Tn and Cn generally differ.
It can be shown by example that it is possible to have Fk ≤ Fi yet neither xk ≤ xi

or xk > xi. That is, the sum when computing Wi contains all of the terms used
to compute Tn plus possibly some additional terms.
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The first modification considered here consists of replacing the test statistic Tn

with Cn, determining critical values under normality, and then using these critical
values when sampling from non-normal distributions. This improved control over
the probability of a Type I error, but with heavy-tailed distributions, estimated
Type I error probabilities still exceeded .075 when testing at the .05 level, and so
another modification was considered where Cn is computed as before, only now

Wi = n−1/2
n∑

k=1

ψ(rk)xkI(Fk ≥ Fi).

The resulting test statistic is labeled Dn. Now control over the Type I error
probability was found to be good in the simulations reported here, and power
compared well to the approach used by He and Zhu.

A very small advantage of the test statistic Dn over Tn is that it is simpler and
more efficient when writing software code in something like R or S-Plus. Nested
loops are easily avoided and built-in functions for computing ranks can be used to
reduce execution time. And as is evident, a major component of the test statistic
is invariant under monotone transformations of the covariates; only the ranks of
the marginal distributions of x are needed. However, the test statistic can be
affected by monotone transformations because this can alter the ψ(ri) values.

4. Some Special Cases

Simulations were used to approximate critical values in the manner just de-
scribed for q = 1, . . . , 6 predictors; n = 10, 20, 30, 50, 100, 200 and 400; γ = .5;
and α = .1, .05, .025 and .01. For n ≤ 100 it was found that a very good
approximation of the α level critical, cα, is given by

cα =
d

n1.5
,

where the values for d are given in Table 1. (When the null hypothesis is true,
Tn → 0 as n → ∞.) By good approximation is meant that in simulations, the
actual level of the test is reasonably close to the nominal level, details of which
are given later in the paper.

Table 1: Values of d for Approximating cα, γ = .5, 10 ≤ n < 100

q

α 1 2 3 4 5 6
.100 0.799 0.763 0.559 0.422 0.334 0.272
.050 1.050 0.955 0.635 0.477 0.384 0.306
.025 1.127 1.909 0.719 0.537 0.430 0.337
.010 1.382 1.241 0.818 0.599 0.472 0.360
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However, for n = 200, the approximation based on Table 1 is not quite satis-
factory, and so for 100 ≤ n ≤ 200, it is suggested that the values for d in Table 2
be used instead. For n < 200 ≤ 400, the values in Table 3 give better results.

Table 2: Values of d for Approximating cα, γ = .5, 100 < n ≤ 200

q

α 1 2 3 4 5 6
.100 1.125 1.104 0.853 0.613 0.386 0.245
.050 1.360 1.558 1.056 0.746 0.461 0.286
.025 1.613 1.732 1.271 0.854 0.531 0.329
.010 1.998 2.226 1.665 1.063 0.632 0.394

Table 3: Values of d for Approximating cα, γ = .5, 200 < n ≤ 400

q

α 1 2 3 4 5 6
.100 1.262 1.472 1.216 0.752 0.487 0.303
.050 1.704 1.858 1.524 0.917 0.582 0.354
.025 2.095 2.157 1.794 1.064 0.678 0.409
.010 2.647 2.541 2.118 1.332 0.768 0.487

5. A Simulation Study

Simulations were used to study the small-sample properties of the method
just described. The initial set of simulations were based on the same situations
considered by He and Zhu (2003). The first of these null cases is

yi = ε

with yi and ε having independent standard normal distributions. The second was

yi = 1 + xi1 + xi2 + ε

with xi1 having a binomial distribution b(5, .5), x2i has a standard normal distri-
bution and ε + 1 has a standard lognormal distribution. And the third was

yi = xi3 + (1 − xi1/2)ε,

where x1, x2 and x3 have independent uniform distributions and now ε + 1 has
a gamma distribution with both shape and scale parameters set equal to 1. It is
merely noted that the estimated probability of a Type I error was very similar to
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the estimates reported by He and Zhu. (They differed from the nominal level by
at most a few units in the third decimal place.) Here the focus is on a broader
range of situations.

The number of covariates considered was q = 1 and 4, similar results were
obtained in both cases, so only the results for q = 4 are reported. The marginal
distributions for x were generated from the family of g-and-h distributions, which
contains normal distributions as a special case (Hoaglin, 1985). If Z has a stan-
dard normal distribution, then

X =

{
exp(gZ)−1

g exp(hZ2/2), if g > 0
Zexp(hZ2/2), if g = 0

has a g-and-h distribution where g and h are parameters that determine the
first four moments. The four distributions used here were the standard normal
(g = h = 0.0), a symmetric heavy-tailed distribution (g = 0.0, h = 0.2), an
asymmetric distribution with relatively light tails ( g = 0.2, h = 0.0), and an
asymmetric distribution with heavy tails (g = h = 0.2). Table 3 shows the
skewness (κ1) and kurtosis (κ2) for each distribution considered. Additional
properties of the g-and-h distribution are summarized by Hoaglin (1985). The
error term ε was also taken to have one of the g-and-h distribution.

Table 4: Some properties of the g-and-h distribution

g h κ1 κ2

0.0 0.0 0.00 3.00
0.0 0.2 0.00 21.46
0.2 0.0 0.61 3.68
0.2 0.2 2.81 155.98

Observations were generated with n = 20 and yi = λ(xi1)ε, where three
choices for λ were used to reflect three types of variance patterns: λ(xi1) ≡ 1
(homoscedasticity), λ(xi1) = |xi1|+1 and λ(xi1) = 1/(|xi1|+1). For convenience,
these three choices for λ are denoted by VP1, VP2 and VP3.

Note that the distributions considered here for x include much heavier tailed
distributions than those considered by He and Zhu. It is well known that with
γ = .5 (L1 regression), protection against the deleterious affects of outliers among
the y values is achieved, but that outliers among the design space can result
in a regression line that poorly reflects the association among the bulk of the
points. So a practical issue is the extent to which heavy-tailed distributions
cause problems when trying to control the probability of a Type I error.

Table 5 shows the estimated probability of a Type I error when testing at the
.05 level. The estimates are based on 1,000 replications and range between .026
and .055.
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Table 5: Estimated Probability, α̂, of a Type I error, n = 20, p = 4

x ε α̂

g h g h VP1 VP2 VP3
0.0 0.0 0.0 0.0 .048 .033 .028
0.0 0.0 0.0 0.2 .046 .034 .033
0.0 0.0 0.2 0.0 .033 .039 .038
0.0 0.0 0.2 0.2 .039 .029 .026
0.0 0.2 0.0 0.0 .034 .044 .042
0.0 0.2 0.0 0.2 .043 .032 .044
0.0 0.2 0.2 0.0 .038 .029 .051
0.0 0.2 0.2 0.2 .042 .034 .046
0.2 0.0 0.0 0.0 .028 .034 .033
0.2 0.0 0.0 0.2 .032 .034 .035
0.2 0.0 0.2 0.0 .035 .045 .034
0.2 0.0 0.2 0.2 .030 .037 .036
0.2 0.2 0.0 0.0 .036 .038 .055
0.2 0.2 0.0 0.2 .040 .028 .051
0.2 0.2 0.2 0.0 .041 .034 .043
0.2 0.2 0.2 0.2 .032 .036 .041

Power comparisons, based on using Tn and Dn, were made as well for the
same situations considered by He and Zhu (2003). It is merely noted that there
appears little or no difference in terms of power.

6. Concluding Remarks

Of course, it is not possible to prove by simulation that the approach used
here always maintains reasonable control over the probability of a Type I error.
However, the distributions considered would seem to include fairly extreme de-
partures from normality, and the types of heteroscedasticity would seem to be
relatively extreme as well, suggesting that in general the method would be ex-
pected to perform in a satisfactory manner. In summary, all indications are that
a very quick and relatively simple method can be applied for the important spe-
cial cases considered here. For other situations, simulations must again be used
to approximate accurate confidence intervals, but it is a simple matter to write
software that stores critical values when these special cases come up and then
to use these critical values in any future investigation where the same values for
n, p and γ occur. An R and S-Plus function that accomplishes this goal, called
qrchk, is available from the author upon request. (This function uses a more
refined approximation of the critical values; it interpolates based critical values
corresponding to the sample sizes 10, 20, 30, 50, 100, 200, and 400.)

Finally, the results reported here indicate that the partial ordering applied to
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the design points can make a practical difference. The reason for this is unknown.
And it also raises the issue of whether alternative partial orderings have practical
value.
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