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Abstract: In dementia screening tests, item selection for shortening an
existing screening test can be achieved using multiple logistic regression.
However, maximum likelihood estimates for such logistic regression models
often experience serious bias or even non-existence because of separation
and multicollinearity problems resulting from a large number of highly cor-
related items. Firth (1993, Biometrika, 80(1),27-38) proposed a penalized
likelihood estimator for generalized linear models and it was shown to re-
duce bias and the non-existence problems. The ridge regression has been
used in logistic regression to stabilize the estimates in cases of multicollinear-
ity. However, neither solves the problems for each other. In this paper, we
propose a double penalized maximum likelihood estimator combining Firth’s
penalized likelihood equation with a ridge parameter. We present a simu-
lation study evaluating the empirical performance of the double penalized
likelihood estimator in small to moderate sample sizes. We demonstrate the
proposed approach using a current screening data from a community-based
dementia study.

Key words: Logistic regression, maximum likelihood, penalized maximum
likelihood, ridge regression, item selection.

1. Introduction

In dementia studies involving large community-based cohorts of elderly par-
ticipants, screening tests are often administered to study participants in order to
obtain a measure of cognitive function. The scores of the screening tests are then
used to determine whether a study participant should undergo more intensive
clinical assessment for diagnosis of dementia. Such screening tests are usually
constructed using a number of items which aim at measuring various domains
of cognitive function. In practical epidemiological or clinical research, however,
there is always a need to shorten existing screening instruments in order to more
efficiently gather the needed information in a limited amount patient time.
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The selection of test items for such shortened screening tests has often involved
univariate comparisons of percentage of correct responses between demented and
normal subjects. Items are retained if they show significant difference in responses
between the two groups of subjects. However, the univariate method only consid-
ers each individual item and ignores that responses for multiple items are often
highly correlated. Combining items with the largest differences in item responses
between demented and normal groups may not lead to the most discriminating
overall test.

A natural alternative to the univariate method would be multivariate item
selection using a multiple logistic regression model, which multivariately mod-
els the relationship between dementia outcomes and the screening items. The
multiple logistic regression model serves several purposes. One is that the model
offers the collective predictive accuracy of the items. The second appeal is that
the model also provides a linear combination of all test items which may be used
as a score to predict the dementia outcomes. Lastly, the standardized parameter
estimates from the logistic model also offer the rankings of test items in terms of
strength of association with dementia.

Item selection using multiple logistic regression often encounters serious es-
timation problems when applied to screening data in dementia. Separation and
multicollinearity are the two common problems in the logistic regression. The
problems become exasperated in the dementia screening data because the two
problems frequently occur together. These problems in logistic regression have
led to aborted attempts by many investigators to shorten instruments for screen-
ing purposes using multiple logistic regression.

Separation in logistic regression frequently occurs when the binary outcome
variable can be perfectly separated by a single covariate or by a non-trivial lin-
ear combination of the covariates (Albert and Anderson (1984)). Heinze and
Schemper (2002) demonstrated that separation can happen even when the un-
derlying model parameters are low in absolute value. They also showed that the
probability of separation depends on sample size, on the number of dichotomous
covariates, the magnitude of the odds ratios and the degree of balance in their
distribution. Ceiling effect resulting from a high proportion of sample having
maximum score in item response also increases the probability of separation.

Separation alone can cause infinite estimates or biased estimates. In cases
where finite maximum likelihood estimates are available, correction of bias in
maximum likelihood estimates of logistic regression have been studied by Ander-
son and Richardson (1979), McLachlan (1980), Schaefer (1983), Copas (1988),
McCullagh and Nelder (1989) and Cordeiro and McCullagh (1991). In situations
where finite maximum likelihood estimates may not exist, Firth (1992, 1993) in-
troduced a penalized maximum likelihood estimator which reduced the bias of
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maximum likelihood estimates in generalized linear models. Firth’s approach
guarantees the existence of estimates by removing the first order bias at each it-
eration step. Bull et al. (2002) extended Firth’s approach to multinomial logistic
regression with nominal response categories, comparing it to maximum likelihood
estimates and to maximum likelihood estimates corrected by an estimate of the
asymptotic bias. They showed that Firth’s penalized maximum likelihood esti-
mator was superior to the other methods in small samples and Firth’s estimator
was equivalent to the maximum likelihood estimator as sample size increased.
Heinze and Schemper (2002) applied Firth’s approach to logistic regression with
separated data sets. Their simulation results demonstrated that Firth’s penal-
ized likelihood estimator provided an ideal solution to the separation problem in
logistic regression.

Multicollinearity is not uncommon when there is a large number of covari-
ates. It may become a serious concern in dementia data because screening items
are often highly correlated. Multicollinearity can cause unstable estimates and
inaccurate variances which affects confidence intervals and hypothesis tests (Ho-
erl and Kennard, 1970, 1988). A ridge estimator originally developed for linear
regression provides a way to deal with the problems caused by multicollinearity.
The ridge estimator in general shrinks estimates towards the origin. The amount
of shrinkage is controlled by the ridge parameter, whose size depends on the
number of covariates and the magnitude of collinearity. The mean squared error
(MSE) is guaranteed to be reduced accordingly by the introduction of ridge pa-
rameter (Schaefer et.al, 1984; Hoerl and Kennard,1970,1988). le Cessie and van
Houwellingen (1992) applied the ridge regression method to logistic regression to
improve parameter estimates and decrease prediction errors.

In this paper, we propose a double penalized maximum likelihood estima-
tor for logistic regression models which combines Firth’s penalized likelihood
approach with a second penalty term for ridge parameter which is capable of
handling both separation and multicollinearity. In section 2, we describe the pro-
posed approach in detail. In section 3, we evaluate the empirical performance of
the proposed estimator in a simulation study. In section 4, We demonstrate the
proposed approach using screening item data from a community-based dementia
study.

2. Proposed Approach

2.1 Double penalized likelihood estimator

Let Yi be a binary response variable, i = 1, . . . , n. Let xi =(xi1, . . . , xip) be
a p-dimentional row vector of covariates. We denote the covariate matrix by X.
In a logistic model, we model the probability P(Yi = 1) by
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P (Yi = 1) = πi =
1

1 + exp−xiβ

where β is a p × 1 vector of parameters corresponding to the covariates. The
log-likelihood function under the logistic regression model is given by

L(β) =
n∑

i=1

li(β),

where
li(β) = Yilogπi + (1 − Yi)log(1 − πi). (2.1)

Maximizing L(β) yields the maximum likelihood estimate (MLE) of β.
Maximum likelihood estimates of β are found to be biased away from the

point β = 0. The asymptotic bias of the MLE β̂ can be expressed as:

Bias(β̂) =
b1(β)

n
+

b2(β)
n2

+ . . . .

Most bias correction methods are focused on removing the first-order bias
from the asymptotic bias of β̂ by using:

β̂corrected = β̂ − b1(β̂)
n

.

However, this method relies on the existence of the MLE β̂. In small to
medium sized data, or data with many covariates, it is not uncommon for β̂ to be
infinite. Let A be the Fisher information matrix for l(β). Firth (1993) proposed
the following penalized likelihood function:

L∗(β) = L(β)A1/2

with the penalized log-likelihood function of

l∗(β) = l(β) +
1
2
log|A|. (2.2)

Firth (1992) noted that this penalized likelihood function is equivalent to the
posterior distribution function for a canonical parameter of an exponential family
model using the Jeffrey’s invariant prior (1946).

We propose to add a second penalty term to Firth’s penalized likelihood
function by including a ridge parameter which forces the parameters to spherical
restrictions:

l∗∗(β) = l(β) +
1
2
log|A| − λ ‖ Pβ ‖2, (2.3)
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where P is a p×p matrix which imposes linear constrains on the parameters of β
and ‖ ‖ denotes the Euclidean norm of a parameter vector. When P is the identity
matrix, all parameters in β equally shrink towards the origin. A special situation
for P would be a partial diagonal matrix with 1 at some diagonal elements and
0 elsewhere and the parameters corresponding to 0 will not be subjected to any
shrinkage. Without loss of generalization, we consider P to be an identity matrix
in subsequent development.

In the double penalized likelihood function l∗∗(β), λ is the ridge parameter
which controls the amount of shrinkage of the norm of β. The choice of λ depends
on the number of covariates and/or the degree of multicollinearity among the
covariates.

In a simple and intuitive example, suppose we have just one independent
variable, xi, which can take only two values: 0 or 1. We consider the simplest
logistic regression of

P (Yi = 1) =
1

1 + e−xiβ
.

In other words, we consider a simple logistic regression with just one regression
parameter without an intercept. Now let n11 =

∑
(yi = 1|xi = 1), n01 =

∑
(yi =

0|xi = 1), n1 = n11 + n01, n10 =
∑

(yi = 1|xi = 0) and n00 =
∑

(yi = 0|xi = 0).
In addition, let p1 = Prob(yi = 1|xi = 1) = 1

1+e−β . Since p0 = Prob(yi = 1|xi =
0) = 1/2, the likelihood function can be written as:

L = pn10
0 (1 − p0)n00pn11

1 (1 − p1)n1−n11 .

Now let C = pn10
0 (1−p0)n00 and it can be seen that C is a constant not involving

the parameter β. Hence the corresponding log-likelihood function can be written
as:

l = logC + n11β + n1log(1 − p1).

The maximum likelihood estimate of β for this model is:

β̂ = log
n11

n1 − n11
.

It is clear from the formulae above that when n1 = n11, meaning that there
is no observation with the combination of xi = 1 and yi = 0, a complete separa-
tion of data will happen. Under such data separation, the maximum likelihood
estimate for β is infinite, i.e. β̂ = ∞.

For this simple logistic model, Fisher’s information matrix is reduced to A =
n1p1(1− p1). Thus Firth’s penalized likelihood function for this model is written
as:

L∗ = Cp
n11+

1
2

1 (1 − p1)n1−n11+
1
2 .
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Parameter estimate from Firth’s penalized likelihood function is therefore:

β̂∗ = log
n11 + 1

2

n1 − n11 + 1
2

.

Notice that Firth’s penalized likelihood estimate is essentially the frequently used
method of adding 1

2 to a zero cell.
Our proposed double penalized log-likelihood function is:

l = logC + (n11 +
1
2
)β + (n1 + 1)log(1 − p1) − 2λβ.

Parameter estimate from the double penalized likelihood approach for this simple
logistic model becomes:

β̂∗∗ = log
n11 + δ

n1 − n11 + (1 − δ)
,

where δ = 1
2−λ. It can be seen that when λ = 0, δ = 1

2 , thus the double penalized
likelihood approach is the same as Firth’s penalized approach. From this sense,
our proposed double penalized approach is an extension to Firth’s method with
additional ability to choose λ to reduce multicollinearity. See Section 2.3 below
for further discussion on the choice of λ.

2.2 Parameter estimation

The Newton-Raphson maximization algorithm procedure can be used to de-
rive β̂ for β. The iterative Newton-Raphson algorithm is defined as:

β̂(t+1) = β̂(t) + (A∗∗)−1(t)U∗∗(β̂(t)),

where t stands for the number of iteration, (A∗∗)−1(t) is the information matrix
of the double penalized likelihood function in (2.3), and U∗∗(β̂(t)) is the first
derivative of the log-likelihood function, i.e.

U∗∗(β) =
∂l(β)
∂β

+
∂

∂β
(
1
2
log|A|) − 2λβ.

A computationally convenient formulae in matrix form for ∂
∂β (1

2 log|A|) was
provided by Bull et al (2002) as:

∂

∂β
(
1
2
log|A|) = X ′Q(X ⊗ X)vec(A−1),

where Q = W ⊗ ei, i = 1, . . . , n, W is a n × n diagonal matrix with element
πi(1−πi)(1− 2πi), ei is a 1×n vector with 1 on the ith column and 0 elsewhere,
vec(A−1) is the vectorized A−1.
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Since the information matrix for the double penalized likelihood function,
A∗∗ = −∂U(β)

∂β + 1
2

∂2log|A|
∂β2 − 2λI, is difficult to derive, we propose to use

Ã∗∗ ≈ −∂U(β)
∂β

− 2λI.

In Bull et al. (2002) where Firth’s original penalized likelihood was consid-
ered, the authors proposed to use the information matrix from the likelihood
function which also excluded Firth’s penality term. The approximate informa-
tion matrix can also be used to provide variance estimates of the parameters at
convergence. In a simulation study presented in the following section, we evaluate
the approximate variance estimates using empirical variance estimates.

2.3 The choice of the ridge parameter

The ridge parameter,λ,is generally chosen to minimize prediction errors of
the logistic models. There are various definitions of the prediction errors in
the literature. Efron(1986), le Cessie and van Houwelingen (1992), for example,
defined three measures to quantify the prediction errors:

(1) classification error (CE)

CE =


1 if Ynew = 1 and π̂ < 1

2 ; or Ynew = 0 and π̂ > 1
2 ,

1
2 if π̂ = 1

2 ,
0 otherwise;

(2) squared error (SE)
SE = (Ynew − π̂)2;

(3) minus log-likelihood error (ML)

ML = −{Ynewlogπ̂ + (1 − Ynew)log(1 − π̂)}.

The advantages and disadvantages of these methods were reviewed in le Cessie
and van Houwelingen (1992). Unlike the classification error approach which con-
siders model prediction in the neighborhood of π = 1

2 , the squared error approach
and minus log-likelihood error approach calculate the prediction errors in the en-
tire range of π values. In this paper, we focus the squared error as a measure of
prediction errors because of its computational convenience.

The mean squared error (MSE) is calculated as an index based on the entire
data set when comparing the effects of different ridge parameters. In lack of an
external validation dataset, we used cross-validated estimate of the mean squared
error (MSE) which is defined as:

MSEcvλ =
1
n

n∑
i=1

(Yi − π̂λ
i )2,
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where π̂λ
i denotes the prediction of πi at a given λ based on parameter estimates

obtained with the ith observation left out. The optimal λ was chosen to minimize
the MSE.

For ease of computation in the cross-validation, we adopted a one-step ap-
proximation method proposed by Cook and Weisberg (1982) for the estimation
of βλ

(−i), the parameters with ith observation left out:

β̂λ
(−i) = β̂λ − {Ã∗∗}−1XT

i (Yi − π̂λ
i )

1 − hii
,

where hii denotes the ith diagnonal element in the hat matrix generated from
Ã∗∗. Similar to le Cessie and van Houwelingen (1992) MSE from cross-validation
can be approximated by:

MSEcvλ ≈ 1
n

n∑
i=1

(Yi − π̂λ
i )2

(1 − hii)2
.

The asymptotic consistency of the double penalized likelihood estimator was
shown in Gao and Shen(in revision). We investigate the empirical performances
of the proposed estimator in small to moderate samples in the following section.

3. A Simulation Study

A simulation study was conducted to evaluate the empirical performance of
the double penalized likelihood estimator (DPLE) in logistic regression and com-
pared it to the maximum likelihood estimator (MLE) and Firth’s penalized likeli-
hood estimator (PLE) with respect to mean bias and mean squared error (MSE).
We considered various scenarios where there were a large number of covariates
with potential high correlations. A combination of binary and continuous covari-
ates was included in the simulation. We chose ten covariates with five binary
and five continuous covariates in the simulation so that the demand of the large
number of covariates was met. The sample sizes were set to be 30, 50, 80, 130 and
200 so that we could investigate how the performance changes with the change
of sample sizes. We implemented the algorithm using SAS IML and macro lan-
guages (SAS 8.2). A SAS macro is available upon request.

We first generated 10 continuous variates from multivariate normal distribu-
tions with zero means, unit variances and a specified correlation matrix, followed
by dichotomization at zero for the first five continuous variates to produce the
five binary covariates. The correlation coefficients among the variates from the
multivariate normal distributions were set to be equally as high as 0.8. The bi-
nary response variable was generated by comparing the predicted probabilities
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from the logistic model with true parameter values to a random number from the
uniform distribution in [0, 1].

We simulated 1000 datasets for each sample size scenario . Our results con-
firmed that the proportion of non-existence for the regular MLEs were extremely
high in small samples but decreased as sample size increased. In our simulations,
none of the datasets had finite MLEs when the sample size was 30. The propor-
tion of having finite MLEs increased as sample size increased (5%, 33%, 83% and
100% for sample size 50, 80, 130 and 200 respectively). Results of the simulations
are presented in Table 1.

Table 1: Simulation results for logistic regression with 10 covariates using three
estimation methods

Sample Size Parameter Mean Bias Mean Squared Error % Bias(Variance)

(% Finite MLE) (True)∗ MLE PLE DPLE MLE PLE DPLE PLE DPLE

n = 30 β0 (-2) 0.19 0.36 1.19 1.23 301 322
(0%) β1 (1) -0.25 -0.31 1.46 1.27 392 473

β2 (1) -0.22 -0.29 1.35 1.19 662 796
β3 (1) -0.24 -0.31 1.25 1.12 450 526
β4 (1) -0.21 -0.26 1.41 1.19 436 534
β5 (1) -0.26 -0.33 1.44 1.29 408 473
β6 (1) -0.86 -0.84 2.21 2.04 341 390
β7 (1) -0.90 -0.88 2.32 2.12 339 381
β8 (1) -0.84 -0.82 2.09 1.91 322 367
β9 (1) -0.88 -0.85 2.25 2.05 306 344
β10 (1) -0.87 -0.85 2.26 2.08 303 331

n = 50 β0 (-2) -0.62 -0.04 0.31 12.45 1.87 1.51 156 164
(5%) β1 (1) 0.64 -0.15 -0.27 9.80 1.45 1.09 153 187

β2 (1) 0.16 -0.04 -0.19 17.57 1.49 1.14 159 188
β3 (1) -0.14 -0.14 -0.26 8.73 1.65 1.30 126 148
β4 (1) 0.11 -0.06 -0.21 6.50 1.48 1.09 142 175
β5 (1) 1.08 -0.03 -0.18 7.89 1.54 1.13 137 158
β6 (1) 0.54 -0.61 -0.59 7.12 1.96 1.57 175 213
β7 (1) 1.34 -0.68 -0.64 17.71 2.11 1.65 162 178
β8 (1) 0.27 -0.63 -0.61 6.59 2.01 1.65 179 219
β9 (1) 0.05 -0.61 -0.59 12.49 1.96 1.55 155 193
β10(1) 0.30 -0.67 -0.63 15.23 2.16 1.67 165 206

n = 80 β0 (-2) -1.67 0.00 0.36 37.96 2.19 1.51 64 84
(33%) β1 (1) 0.77 -0.10 -0.23 18.07 1.60 1.09 61 85

β2 (1) 0.49 -0.05 -0.20 8.68 1.33 0.92 87 116
β3 (1) 0.99 -0.02 -0.17 26.22 1.42 0.97 78 99
β4 (1) 1.01 -0.04 -0.19 25.90 1.47 1.05 67 84
β5 (1) 0.85 -0.07 -0.23 22.09 1.40 0.94 88 125
β6 (1) 0.86 -0.30 -0.32 18.94 1.78 1.19 82 113
β7 (1) 1.14 -0.23 -0.28 17.64 1.74 1.08 78 115
β8 (1) 1.02 -0.28 -0.30 20.52 1.63 1.06 81 108
β9 (1) 1.06 -0.28 -0.31 23.00 1.73 1.15 91 127
β10 (1) 0.90 -0.31 -0.34 21.41 1.72 1.17 79 102

∗Parameter β0 denotes the intercept, β1-β5 denote binary covariates and β6-β10

denote continuous covariates.
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Table 1 (continued): Simulation results for logistic regression with 10 covariates
using three estimation methods

Sample Size Parameter Mean Bias Mean Squared Error % Bias(Variance)

(% Finite MLE) (True)∗ MLE PLE DPLE MLE PLE DPLE PLE DPLE

n = 130 β0 (-2) -1.21 0.01 0.28 16.30 1.35 0.95 30 52
(83%) β1 (1) 0.62 -0.06 -0.17 8.05 1.03 0.74 24 42

β2 (1) 0.49 -0.04 -0.15 10.45 1.17 0.83 15 29
β3 (1) 0.62 -0.02 -0.13 8.08 1.01 0.70 28 46
β4 (1) 0.83 0.04 -0.09 10.09 1.00 0.70 28 44
β5 (1) 0.78 -0.01 -0.12 10.47 1.10 0.75 18 36
β6 (1) 0.80 -0.06 -0.13 11.71 1.25 0.82 25 42
β7 (1) 0.89 -0.08 -0.14 10.50 1.20 0.83 35 54
β8 (1) 1.03 -0.04 -0.10 15.44 1.11 0.74 36 60
β9 (1) 0.89 -0.03 -0.10 14.57 1.17 0.76 35 60
β10 (1) 0.82 -0.06 -0.12 10.32 1.13 0.76 22 43

n = 200 β0 (-2) -0.72 0.00 0.17 5.38 0.89 0.65 -1 20
(100%) β1 (1) 0.34 -0.04 -0.11 2.81 0.69 0.53 -3 11

β2 (1) 0.44 0.03 -0.05 2.83 0.61 0.47 6 22
β3 (1) 0.40 0.03 -0.05 2.05 0.61 0.47 5 21
β4 (1) 0.36 -0.01 -0.09 2.40 0.60 0.46 8 26
β5 (1) 0.38 0.01 -0.07 1.95 0.60 0.46 7 23
β6 (1) 0.47 0.00 -0.03 3.25 0.69 0.53 6 20
β7 (1) 0.46 0.03 -0.02 2.40 0.72 0.55 1 16
β8 (1) 0.52 0.04 -0.01 3.14 0.76 0.56 3 15
β9 (1) 0.47 0.00 -0.05 2.90 0.75 0.57 9 21
β10 (1) 0.46 0.01 -0.03 2.41 0.70 0.53 7 23

∗Parameter β0 denotes the intercept, β1-β5 denote binary covariates and β6-β10

denote continuous covariates.

In general, both penalized maximum likelihood estimators had significantly
smaller mean biases and MSEs compared to the MLEs. The differences are larger
when the sample size is small or medium (see Table 1). In Figure 1, we plotted
the mean bias and the MSE of the PLE and DPLE for different sample sizes. It
can be seen that DPLE has bigger bias than PLE and the MSE of DPLE was
smaller compared to that of PLE. This trend is more evident when the sample size
is small or moderate. As the sample size increased, the two procedures became
indistinguishable with respect to the mean bias and MSE. We point out that
these results are expected because the introduction of the ridge parameter in the
DPLE sacrifices bias for the gain in MSE.

There seem to be differences in the parameter estimates for the binary and
continuous covariates between the PLE and DPLE estimators with respect to
mean bias and MSE in our simulation. The ridge effect appeared to be stronger
in continuous covariates than in binary covariates. For the binary covariates, the
reduction of MSE in DPLE compared to PLE clearly showed a compromise in
terms of increased bias. For the continuous covariates, the MSE was significantly
reduced in the DPLE method. However, the mean bias was not significantly
affected by the addition of the ridge parameter. DPLE and PLE differed most
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notably in smaller sample sizes and their differences become negligible when the
sample size gets large.

We also included the percentage of estimated bias using the approximate vari-
ance estimates compared to empirical variance estimates based on the simulation
in Table 1. The approximate information matrix overestimated the variances in
both DPLE and PLE estimators when the sample size was small. The magnitude
of overestimation is significantly reduced as sample size increased.
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Figure 1: Plots of mean biases and mean squared errors for sample sizes and
covariate types in logistic regression
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4. Indianapolis Dementia Study

The Indianapolis Dementia Study is a community-based prospective cohort
study of Alzheimer’s disease and dementia in elderly African Americans in Indi-
anapolis, Indiana. Data was collected during one baseline wave and four follow-up
waves at 2, 5, 8 an 11 years after baseline. An enrichment sample of additional
subjects was added at the third follow-up wave when blood samples were also
collected from those subjects who consented for biochemical analyses. The Com-
munity Screening Interview for Dementia (CSID) was used as a screening in-
strument to evaluate and stratify study subjects’ cognitive function (Hall et al.,
1996). Items in the CSID were selected from various well-known neuropsycholog-
ical tests to measure the following functions in an interview: memory, abstract
thinking, reasoning and judgement. There are 33 test questions in the CSID.
At the third follow-up examination, 2628 elderly African-American subjects were
screened with the CSID and stratified into three performance groups, namely
poor, intermediate and good performance. Four hundred and fifty eight subjects
were randomly selected with the sampling probabilities of 100%, 50% and 5%,
respectively, in the poor, intermediate and good performance groups to undergo
extensive clinical evaluation for dementia and Alzheimer’s disease.

In this analysis, we selected 5 binary and 5 continuous items from the CSID
which were presumed predictive of dementia. We included subjects who were
administered the CSID for the first time at the 8-year wave and who also had
biochemical measures available. Furthermore, we excluded subjects with a di-
agnosis of mild cognitive impairment and subjects with incomplete responses to
screening items, resulting in a sample of 59 subjects, of whom 21 were demented
and 38 were normal. The items are described in details as below:
1. Do you remember my name? (interviewers introduced themselves at the
beginning of interview and asked the subject to remember their names for later
recall)
2. Who is the Mayor of the city?
3. What is the name of the civil rights leader who was assassinated in Memphis
in 1968?
4. Who is the current president in the USA?
5. Who is the current governor of Indiana?
6. Place orientation. It is generated from the following 4 binary items:

1) What is the name of the city?
2) What are the two major streets near your home?
3) What is the city market?
4) What is your complete address, including your zip code?

7. Time orientation. it is generated from the following 5 binary items:



Separation and Multicollinearity in Logistic Regression 527

1) What day of the week is it?
2) What month is it?
3) What year is this?
4) What season is it?
5) Did it rain(snow)yesterday?

8. Read a short story and then ask the subject to repeat as much of the story as
he/she can.
9. Recall the story from item 8 after a while.
10. Ask the subject to give the names for as many different animals as he/she
can in one minute.

Table 2: Demographic characteristics and item properties in the demented and
normal groups

Demented Normal p-value∗

Variables (n = 21) (n = 38)

Demographic Characteristics
Mean age (SD) 79(5.7) 77(5.3) 0.1097
Mean years of education (SD) 8.6(4.4) 9.6(3.3) 0.3373
% Male 62 40 0.0985
% White Collar Occupation** 15.6 24.8 0.1202

Binary Items %correct %correct
Remember Name 33 89 < 0.0001
Mayor 10 32 0.0428
Civil War 67 92 0.0156
President 24 87 < 0.0001
Governor 14 32 0.1441

Continuous Items Mean(SD) Mean(SD)
Place Orientation 2.5(1.3) 3.8(0.5) 0.0002
Time Orientation 2.9(1.5) 4.7(0.5) < 0.0001
Repeat Story 2.8(1.8) 4.9(1.3) < 0.0001
Recall Story 2.5(2.0) 4.7(1.6) < 0.0001
Animals 8.7(3.9) 14.1(4.0) < 0.0001

∗p-value is obtained from t-tests for continuous variables and from χ2 tests for
binary variables.
∗∗White Collar Occupations included sales, professional, clerical and/or admin-
istrative, and protective. Occupations were classified using the Standardized
Occupational Classification Manual.

The first 5 items are binary with correct and incorrect responses and the last 5
items are continuous. The items ”Place orientation” and ”Time orientation” are
highly correlated (r = 0.74). Table 2 presents demographic characteristics and
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item responses between the demented and normal groups. All items except ”Gov-
ernor” have significantly different responses univariately between the demented
and normal.

The logistic regression models using the MLE, PLE and DPLE are presented
in Table 3. Figure 2 demonstrated that the cross-validated estimate of the MSE
changes as a function of the ridge parameter. The optimal ridge parameter is
chosen to be 0.01 for this data set. Table 3 showed the two penalized MLEs
are significantly smaller in magnitude than the regular MLEs for all items. The
DPLEs are closer to zero than the PLEs. The ridge effects are clearly demon-
strated in the items ”Place Orientation” and ”Time Orientation”, in which there
are about 16% and 14% reduction of estimates respectively in the DPLE method
compared to the PLE method. This is because the two items are highly corre-
lated as mentioned early and the ridge parameter penalized the multicollinearity
effect.

In this dataset, finite MLEs were available in the regular logistic regression
model given the sample size of 59. However, based on our converged simulation
results we expect the MLEs to have larger mean squared errors than either the
PLEs or the DPLEs.

Table 3: Parameter estimates and asymptotic standard errors in logistic re-
gression for dementia using MLE, PLE and DPLE.

MLE PLE DPLE(λ=0.01)
Covariate Estimate SE Estimate SE Estimate SE

Remember -3.63 1.57 -2.05 1.00 -1.97 0.95
Name

Mayor -2.07 2.28 -0.80 1.39 -0.81 1.31
Civil War 1.31 2.42 0.33 1.57 0.28 1.38
President -3.95 1.95 -1.99 1.09 -1.91 1.05
Governor 1.57 1.67 0.97 1.04 0.91 1.01
Place -1.07 1.05 -0.43 0.70 -0.36 0.63

Orientation
Time -1.03 1.06 -0.69 0.70 -0.59 0.63

Orientation
Repeat 0.85 0.92 0.45 0.56 0.43 0.53

Story
Recall -1.02 0.66 -0.56 0.43 -0.53 0.40

Story
Animals -0.25 0.28 -0.09 0.16 -0.08 0.14
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Figure 2: Cross-validated estimates of the mean squared errors as a function
of the ridge parameter

5. Discussion

In this paper, we proposed a double penalized maximum likelihood estimator
for logistic regression model, providing a solution to the problems of separation
and multicollinearity for multivariate item selection in dementia. We demon-
strated with simulation results that the double penalized estimator achieves min-
imum mean squared error at the expense of tolerable amount of bias in small
to moderate samples. Most importantly, the double penalized estimation ap-
proach yields viable estimates in cases which maximum likelihood estimates do
not, therefore providing an attractive alternative to maximum likelihood estima-
tor in logistic regression when a large number of covariates have to be considered.
In addition, we acknowledge that the double penalized approach can be applied
to any GLIM model though we focused on our discussion in logistic regression
model.
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