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Abstract: A crucial problem in knowledge space theory, a modern psy-
chological test theory, is the derivation of a realistic knowledge structure
representing the organization of knowledge in an information domain and
examinee population under reference. Often, one is left with the problem
of selecting among candidate competing knowledge structures. This article
proposes a measure for the selection among competing knowledge structures.
It is derived within an operational framework (prediction paradigm), and is
partly based on the unitary method of proportional reduction in predictive
error as advocated by the authors Guttman, Goodman, and Kruskal. In
particular, this measure is designed to trade off the (descriptive) fit and size
of a knowledge structure, which is of high interest in knowledge space theory.
The proposed approach is compared with the Correlational Agreement Coef-
ficient, which has been recently discussed for the selection among competing
surmise relations. Their performances as selection measures are compared
in a simulation study using the fundamental basic local independence model
in knowledge space theory.
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1. Introduction

Knowledge structures and surmise relations are mathematical models that
belong to the theory of knowledge spaces (reviewed in Section 2). Knowledge
space theory (KST) was introduced by Doignon and Falmagne (1985, 1999), and
it has been successfully applied for the computerized, adaptive assessment and
training of knowledge; for instance, see the ALEKS (Assessment and LEarning
in Knowledge Spaces) system, a fully automated math tutor on the Internet.2

2See http://www.aleks.com
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KST models have also been applied in such areas as the structuring of hyper-
texts, the analysis of organizational workflows, and the modeling of cross-cultural
knowledge and inter/intra-cultural value systems.3

However, a crucial problem in KST is the derivation of a ‘realistic’ knowledge
structure from empirical data, representing the organization of ‘knowledge’ in an
information domain and examinee population under reference. In this regard,
often one has to make a choice among candidate competing knowledge struc-
tures. (For instance, Section 5 describes how the candidate competing knowledge
structure models may be obtained data-analytically, based on a modified Item
Tree Analysis procedure. Or, the competing models under consideration may be
derived theoretically, based on different psychological theories/postulates.)

A measure κ is proposed for the evaluation of knowledge structures. It is
designed to trade off the (descriptive) fit of a knowledge structure to a given data
set and its size. Such a trade-off is of high interest in KST. (For instance, Section
4.5 mentions that this type of trade-off is beneficial for the efficient application
of adaptive knowledge assessment procedures. In general, for a knowledge struc-
ture of a smaller size only a fewer items have to be answered by an examinee to
assess her/his state of knowledge. Of course, the assessment procedure must also
be based on a, more or less, ‘valid’ (data fitting) knowledge structure underly-
ing an examinee’s response behavior. In addition, the more states are contained
in a knowledge structure (larger size) the smaller are the distances of the ob-
served response patterns to the closest states in the knowledge structure (better
fit). Therefore, any such measure must realize a trade-off between the size of a
knowledge structure and its fit to the data.) The measure κ is derived within
an operational framework (prediction paradigm), partly based on the unitary
method of proportional reduction in predictive error (Section 4).

The approach to ‘model selection’ among knowledge structures based on the
measure κ is compared with the Correlational Agreement Coefficient (CA, re-
viewed in Section 3), which has been recently discussed for the selection among
surmise relations. The performances of κ and CA as selection measures are com-
pared in a simulation study using the basic local independence model, which is a
fundamental finite mixture, latent variable model in KST.

On the structure of this article. Section 2 reviews basic deterministic and
probabilistic concepts of KST that are relevant for this work. Section 3 recapitu-
lates the Correlational Agreement Coefficient CA. Section 4 proposes the size/fit
trade-off evaluation procedure κ. Section 5 introduces modified Item Tree Anal-
ysis. Section 6 discusses an application of κ and CA to simulated data. This

3For a comprehensive list of references on KST and its applications, refer to the web sites at
http://css.uni-graz.at/staff/hockemeyer/kst-bib.html and http://css.uni-graz.at/kst.php, which
are maintained by C. Hockemeyer and M. D. Kickmeier-Rust (University of Graz, Austria).
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article concludes with a discussion in Section 7, containing a summary and some
suggestions for further research.

2. Knowledge Space Theory

This section starts with a motivating small example which is taken from
Falmagne et al. (2003), and then briefly reviews some of the basic deterministic
and probabilistic concepts of KST. For details, the reader is referred to Doignon
and Falmagne (1999).

2.1 Example: elementary algebra

A natural starting point for a theory of knowledge assessment and training
stems from the observation that some pieces of knowledge may imply other pieces
of knowledge. In the context of this section, the mastery of some algebra problem
may imply the mastery of other problems. Such implications between pieces of
knowledge may be used to design efficient computer-based, adaptive knowledge
assessment and training procedures (cf. Section 4.5).

Consider the six dichotomous problems in Elementary Algebra:

a. A car travels on the freeway at an average speed of 52 miles per hour. How
many miles does it travel in 5 hours and 30 minutes?

b. Using the pencil, mark the point at the coordinates (1, 3).

c. Perform the following multiplication:

4x4y4 · 2x · 5y2

and simplify your answer as much as possible.

d. Find the greatest common factor of the expressions 14t6y and 4tu5y8. Sim-
plify your answer as much as possible.

e. Graph the line with slope −7 passing through the point (−3,−2).

f. Write an equation for the line that passes through the point (−5, 3) and is
perpendicular to the line 8x + 5y = 11.

A plausible prerequisite diagram of mastery dependencies for the six Elemen-
tary Algebra problems may look like in Figure 1. (Reflexivity and transitivity
are assumed to hold and are not explicitly depicted.) The mastery of Problem b
is, for instance, a prerequisite for the mastery of Problem e. In other words, the
mastery of Problem e implies that of Problem b.
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Figure 1: Prerequisite diagram of mastery dependencies for the six Elementary
Algebra problems

The prerequisite diagram in Figure 1 completely specifies the feasible knowl-
edge states. A respondent can certainly master just Problem a. This does not
imply mastery of any other problem. In that case, the knowledge state is {a}.
However, if the respondent masters e, for instance, then a, b, and c must also
be mastered. This gives the knowledge state {a, b, c, e}. In this way, one obtains
exactly 10 knowledge states consistent with the prerequisite diagram:

K =
{
∅, {a}, {b}, {a, b}, {a, c}, {a, b, c},

{a, b, c, d}, {a, b, c, e}, {a, b, c, d, e}, {a, b, c, d, e, f}
}

.

This set K of all possible knowledge states is called knowledge structure. These
notions are next formalized mathematically in the following section.

2.2 Basic deterministic concepts

A general concept is that of a knowledge structure.

Definition 1. A knowledge structure is a pair (Q,K), with Q a non-empty,
finite set, and K a family of subsets of Q containing at least the empty set ∅ and Q.
The set Q is called the domain of the knowledge structure. The elements q ∈ Q
and K ∈ K are referred to as (test) items and (knowledge) states, respectively.
We also say that K is a knowledge structure on Q.

The set Q is assumed to be a set of dichotomous items. In this article, Q
is interpreted as a set of questions/problems that can either be solved (coded 1)



Psychometric Data Analysis: A Size/fit Trade-off Evaluation Procedure 495

or not be solved (coded 0). This stands for the observed responses of a subject
(manifest level), and has to be distinguished from a subject’s true, unobservable
knowledge of the solution to an item (latent level). In the latter case, we say
that the subject is capable of mastering or not capable of mastering the item.
Let 2Q denote the power-set of Q, that is, the set of all subsets of Q. Let |Q|
stand for the size (number of elements) of Q. The observed responses of a subject
are represented by the subset R ⊂ Q containing exactly the items solved by the
subject. This subset R is called the response pattern of the subject. Similarly,
the true latent state of knowledge of a subject is represented by the subset K ⊂ Q
containing exactly the items the subject is capable of mastering. This subset K
is called the knowledge state of the subject. Given a knowledge structure K, the
only states of knowledge possible are assumed to be the ones in K. In this spirit,
K captures the organization of knowledge in the domain and population under
reference. Idealized, if no response errors would be committed, the only response
patterns possible would be the knowledge states in K.

As an example knowledge structure consider the one described in Section 2.1,
on the domain Q = {a, b, c, d, e, f} of the six Elementary Algebra problems.

Note that this example knowledge structure is closed under union and inter-
section.

Definition 2. A knowledge structure (Q,K) is called a knowledge space if
and only if (iff) the union of any two knowledge states is a knowledge state.
A knowledge space (Q,K) is called quasi-ordinal iff the intersection of any two
knowledge states is a knowledge state.

The notions of a knowledge structure and (quasi-ordinal) knowledge space are
at the level of persons (representing collections of knowledge states of individuals).
There is another important notion, that of a surmise relation, which is at the level
of items (representing collections of mastery dependencies between items).

Definition 3. Any quasi-order, that is, reflexive and transitive binary relation,
on Q is called a surmise relation.

A surmise relation ≺ on Q may model a latent hierarchy among the items
based on mastery dependencies of the following type: a subject capable of mas-
tering item j ∈ Q is also capable of mastering item i ∈ Q (i.e., i ≺ j).

As an example surmise relation consider the surmise relation ≺ corresponding
to the prerequisite diagram of mastery dependencies in Figure 1: a ≺ a, b ≺ b,
c ≺ c, d ≺ d, e ≺ e, f ≺ f , a ≺ c, a ≺ d, a ≺ e, a ≺ f , b ≺ d, b ≺ e, b ≺ f , c ≺ d,
c ≺ e, c ≺ f , d ≺ f , e ≺ f .

Birkhoff’s (1937) theorem (applied in KST, Theorem 1) provides a linkage
between quasi-ordinal knowledge spaces and surmise relations on an item set.
(This theorem is crucial in this article. It allows for formulating the modified
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Item Tree Analysis procedure (Section 5.2) and comparing the coefficients κ and
CA (Section 6.3).)

Theorem 1. There is a one-to-one correspondence between the family of all
quasi-ordinal knowledge spaces K on a domain Q, and the family of all surmise
relations ≺ on Q. Such a correspondence is defined through the two equivalences:

a ≺ b iff for any state K ∈ K, b ∈ K implies a ∈ K;
K ∈ K iff for any pair a ≺ b, b ∈ K implies a ∈ K.

Proof. See Doignon and Falmagne (1999, pp. 39-40, Theorem 1.49).

This theorem is important from a practical point of view. Though the quasi-
ordinal knowledge space and surmise relation models are empirically interpreted
at two different levels, at the levels of persons and items respectively, they are
connected with each other, through Birkhoff’s theorem, on a solid mathematical
basis. Roughly speaking, it mathematically links two different levels of empirical
interpretations.

In the example in Section 2.1, the 10 knowledge states consistent with the
prerequisite diagram in Figure 1 are obtained by applying the second equivalence
of Birkhoff’s theorem.

2.3 Basic probabilistic concepts

Examinees are drawn randomly from a population under reference. Let N
be the sample size. The data are represented by the absolute counts N(R) of
response patterns (subsets of Q containing exactly the items solved by the ex-
aminees) R ⊂ Q. We assume that the examinees give their response patterns
independent of each other. The true probability of occurrence ρ(R) of any re-
sponse pattern R ⊂ Q is assumed to stay constant across the examinees. Hence
the data are assumed to be multinomially distributed over all subsets of Q.

Let the maximum probability of occurrence be denoted by ρ(Rmax),

ρ(Rmax) = max
R⊂Q

ρ(R),

for some appropriate response pattern Rmax ⊂ Q. Maximum likelihood estimates
(MLEs) for the population probabilities ρ(R) (R ⊂ Q) are ρ̂(R) = N(R)/N . The
MLE for ρ(Rmax) is

̂ρ(Rmax) = N(R′
max)/N,

where N(R′
max) denotes the maximum absolute count N(R′

max) = maxR⊂Q N(R),
for some appropriate response pattern R′

max ⊂ Q.



Psychometric Data Analysis: A Size/fit Trade-off Evaluation Procedure 497

In the example in Section 6, we simulate multinomial response data using a
basic local independence model.

Definition 4. A quadruple (Q,K, p, r) is called a basic local independence
model (BLIM) iff

1. (Q,K) is a knowledge structure;

2. p is a probability distribution on K, that is, p(K) > 0 for any K ∈ K, and∑
K∈K p(K) = 1;

3. r is a response function for (Q,K, p), that is, r(R,K) ≥ 0 for any R ⊂ Q
and K ∈ K, and

∑
R⊂Q r(R,K) = 1 for any K ∈ K;

4. r satisfies local independence, that is, for any R ⊂ Q and K ∈ K,4

r(R,K) =


 ∏

q∈K\R

βq

 ·

 ∏
q∈K∩R

(1 − βq)


·

 ∏
q∈R\K

ηq

 ·

 ∏
q∈Q\(R∪K)

(1 − ηq)

 ,

with two constants βq, ηq ∈ [0, 1) for each q ∈ Q, respectively called careless
error and lucky guess probabilities at q.

To each knowledge state K ∈ K is attached a probability p(K) measuring the
likelihood that a randomly sampled examinee is in state K (Part 2). For R ⊂ Q
and K ∈ K, r(R,K) specifies the conditional probability of response pattern R
for an examinee in state K (Part 3). (The BLIM takes into account the two
ways in which probabilities must supplement deterministic knowledge structures.
First, knowledge states may occur with different proportions in the population
under reference. Second, response errors (careless errors and lucky guesses) may
render impossible a priori specification of the observable responses of an examinee
given her/his knowledge state.) The item responses of an examinee are assumed
to be independent given the knowledge state of the examinee, and the response

4Note that K \ R = {q ∈ Q : q ∈ K and q 6∈ R}, K ∩ R = {q ∈ Q : q ∈ K and q ∈ R},
R \ K = {q ∈ Q : q ∈ R and q 6∈ K}, and Q \ (R ∪ K) = {q ∈ Q : q 6∈ R and q 6∈ K} form a
partition of Q, that is, Q = (K \ R) + (K ∩ R) + (R \ K) + (Q \ (R ∪ K)). Roughly speaking,
items in K \ R, K ∩ R, R \ K, and Q \ (R ∪ K) are mastered but not solved (careless error),
mastered and solved (no careless error), solved but not mastered (lucky guess), and not solved
and not mastered (no lucky guess), respectively.
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error probabilities βq, ηq (q ∈ Q) are attached to the items (item-specific) and do
not vary from state to state (state-independent) (Part 4).

Under the BLIM, the manifest multinomial probability distribution on the
response patterns is governed by the latent state proportions and response error
rates:

ρ(R) =
∑
K∈K


 ∏

q∈K\R

βq

 ·

 ∏
q∈K∩R

(1 − βq)


·

 ∏
q∈R\K

ηq

 ·

 ∏
q∈Q\(R∪K)

(1 − ηq)

 p(K).

3. Correlational Agreement Coefficient CA

This section briefly reviews the Correlational Agreement Coefficient CA. For
details, the reader is referred to Ünlü and Albert (2004); see also Schrepp (2006).

The Correlational Agreement Coefficient CA was introduced by Leeuwe (1974)
within Item Tree Analysis, a data-analytic procedure for deriving surmise rela-
tions on sets of dichotomous items (Section 5.1). In Item Tree Analysis, CA is
used as a descriptive goodness-of-fit measure for selecting out of competing sur-
mise relations one with maximum CA value. It is a measure formulated at the
level of items, for surmise relations (cf. Theorem 1).

3.1 Required notation and terminology

Let the non-empty, finite item set be denoted by Q = {Il : 1 ≤ l ≤ m}.
(The definition of CA requires an indexing of the items. That is why we use this
notation.) For the random sample of N examinees, let the corresponding binary
(of type 0/1) data matrix (of item responses) be D. Let ≺ be a surmise relation
on Q. We say that ≺ is consistent with the data matrix D iff for any item pair
Ii ≺ Ij , every examinee solving item Ij also solves item Ii.

Empirical correlation rij between items Ii and Ij is defined as the sample
Pearson correlation between the corresponding columns si and sj of D. That is,
rij = Cov(si, sj)/(

√
V ar(si)

√
V ar(sj)), where Cov() and V ar() stand for the

sample covariance and variance, respectively.
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Theoretical correlation r∗ij between items Ii and Ij is defined as

r∗ij =



1 : Ii ≺ Ij and Ij ≺ Ii√
(1−pIi

)·pIj

(1−pIj
)·pIi

: Ii ≺ Ij and Ij 6≺ Ii√
(1−pIj

)·pIi

(1−pIi
)·pIj

: Ii 6≺ Ij and Ij ≺ Ii

0 : Ii 6≺ Ij and Ij 6≺ Ii

where pIi and pIj are the sample proportions-correct of items Ii and Ij , respec-
tively.

3.2 Definition of CA

A comparison of empirical and theoretical correlation gives the following re-
sult.

Proposition 1. Let ≺ be a surmise relation on Q that is consistent with the
data matrix D. Let Ii and Ij be items for which the empirical correlation exists.
For the difference δij = rij − r∗ij between empirical and theoretical correlation, it
holds

δij

{
= 0 : Ii ≺ Ij or Ij ≺ Ii

6= 0 in general : Ii 6≺ Ij and Ij 6≺ Ii

Proof. See Ünlü and Albert (2004, p. 287, Proposition 12).

Proposition 1 gives motivation for the definition of the Correlational Agree-
ment Coefficient.

Definition 5. The Correlational Agreement Coefficient CA is defined by

CA = CA(≺, D) = 1 − 2
m(m − 1)

∑
(Ii,Ij)∈AQ

(rij − r∗ij)
2,

where
AQ = {(Ii, Ij) ∈ Q × Q : i < j and rij exists} .

The decision rule for applications of CA is as follows. The greater the value
of CA is, the ‘better’ a surmise relation is judged to fit the data.
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4. Measure κ

This section proposes the measure κ for evaluating knowledge structures. It
is specially designed to trade off the fit and size of a knowledge structure, and is
derived within an operational framework (prediction paradigm).

4.1 Prediction paradigm

The prediction problem considered is as follows. An individual is randomly
chosen from the population under reference, and we are asked to guess her/his
response pattern, given either

(no info). no further information (other than the multinomial distribution), or

(info). the knowledge structure K assumed to underlie the responses of the in-
dividual.

The prediction strategies in the two cases are as follows. In the ‘no info’ case,
we optimally guess some response pattern Rmax ⊂ Q with the largest probability
of occurrence ρ(Rmax). In the ‘info’ case, we proportionally guess the knowledge
states K ∈ K with their probabilities of occurrence ρ(K). Since the latter proba-
bilities may not add up to one, in general, there may be a non-vanishing residual
probability 1 −

∑
K∈K ρ(K) > 0. To complete the prediction strategy, hence we

abstain from guessing with probability 1 −
∑

K∈K ρ(K), and in the sequel, view
that as a prediction error.

The probabilities of a prediction error in the two cases are as follows. In the
‘no info’ case, the probability of a prediction error is 1 − ρ(Rmax); in the ‘info’
case, it is 1 −

∑
K∈K ρ2(K). (The (complementary) probabilities of a prediction

success are ρ(Rmax) and
∑

K∈K ρ2(K), respectively.)

4.2 First constituent of κ: Measure of fit

The measure κ consists of two constituents. The first constituent of κ mea-
sures the degree to which a knowledge structure descriptively reflects the response
data; the fit. It expresses the extent to which the multinomial probability distri-
bution on the response patterns is concentrated to the knowledge structure.

The first constituent of κ is derived on the basis of the method of proportional
reduction in predictive error (PRPE); the method of PRPE was introduced by
Guttman (1941), and it was systematically applied in the series of articles by
Goodman and Kruskal (1954, 1959, 1963, 1972). The general probability for-
mula of the method of PRPE quantifies the predictive utility, PUinfo, of given
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information:

PUinfo =
Prob. of error (no info) − Prob. of error (info)

Prob. of error (no info)
.

Inserting the afore mentioned prediction error probabilities into this formula,
we obtain the population analog of the first constituent m1,

m1 =
∑

K∈K ρ(K)2 − ρ(Rmax)
1 − ρ(Rmax)

.

Some remarks are in order with respect to m1.

1. It holds −∞ < m1 ≤ 0 (ρ(Rmax) ≥
∑

R⊂Q ρ2(R) ≥
∑

K∈K ρ2(K)).

2. Obviously, m1 = 0 iff ρ(Rmax) =
∑

K∈K ρ2(K). In other words, m1 assumes
its extreme value in the case of, and only of, guessing with the largest proba-
bility of a prediction success. In that case, we have zero residual probability
(
∑

K∈K ρ(K) = 1), and the distribution on the response patterns is com-
pletely concentrated to the knowledge structure K (ρ(R) = 0 for any R ⊂ Q,
R 6∈ K).

Inserting MLEs, we obtain the MLE m̂1 for m1,

m̂1 =
∑

K∈K N(K)2 − N · N(R′
max)

N2 − N · N(R′
max)

.

(We assume that 1 − N(R′
max)/N 6= 0. Since, by assumption, ρ(Rmax) 6= 1, and

N(R′
max)/N is the MLE for ρ(Rmax), this is likely the case for large samples.)

4.3 Second constituent of κ: Measure of size

The second constituent of κ captures the size of a knowledge structure. It
expresses the extent to which the restricted multinomial probability distribution
on the knowledge states is concentrated to a fraction of the knowledge structure.
(In Section 4.5, a special choice of a fraction is determined in the context of
‘model selection’ among competing knowledge structures, based on the median
match of the competing models.)

The definition of the second constituent of κ is based on the following notion
of a truncation of a knowledge structure. Let n ≥ 1 (a natural number) be
a truncation constant. An n-truncation of K is any subset Knt of K which is
derived as follows:

1. Order the knowledge states according to their occurrence probabilities,
say, from left to right, ascending from smaller probabilities to larger ones.
Knowledge states with equal probabilities are ordered arbitrarily.
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2. Starting with the foremost right knowledge state, a knowledge state with
the largest probability of occurrence, take the first min(|K|, n) knowledge
states, descending from right to left. The set of all these knowledge states
is called an n-truncation of K, denoted by Knt.

(Depending on the orderings of equiprobable knowledge states, the set Knt

may vary. In general, there are multiple n-truncations of a knowledge structure.
The definition of the second constituent, however, is invariant with respect to the
choice of a particular n-truncation. In Section 4.5, we describe how a reasonable
truncation constant can be chosen in the context of ‘model selection’ among
competing knowledge structure models.)

For a truncation constant n, and any n-truncation Knt of K, we obtain the
population analog of the second constituent m2,

m2 =
∑

K∈K ρ2(K)∑
K∈Knt

ρ2(K)
.

Some remarks are in order with respect to m2.

1. It holds 1 ≤ m2 < +∞.

2. Obviously, m2 = 1 iff
∑

K∈Knt
ρ2(K) =

∑
K∈K ρ2(K). In other words,

m2 assumes its extreme value in the case of, and only of, no loss of the
probability of a prediction success when guessing based on a fraction, an
n-truncation, of K than on the whole knowledge structure K. In that case,∑

K∈Knt
ρ(K) =

∑
K∈K ρ(K), and the restricted distribution on the knowl-

edge states is completely concentrated to an n-truncation Knt (ρ(K) = 0
for any K ∈ K, K 6∈ Knt).

Inserting MLEs, we obtain the MLE m̂2 for m2,

m̂2 =
∑

K∈K N(K)2∑
K∈dKnt

N(K)2
,

where K̂nt is analogously defined as Knt, replacing occurrence probabilities ρ(K)
with their MLEs N(K)/N (for knowledge states K ∈ K). (We assume that∑

K∈K N(K) 6= 0. Since, by assumption,
∑

K∈K ρ(K) 6= 0, and (
∑

K∈K N(K))/N
is the MLE for

∑
K∈K ρ(K), this is likely the case for large samples.)

4.4 Measure κ: Size/fit trade-off

The measure κ is defined as the product of the size measure m2 and the
shifted fit measure m1. (The shift by ‘−c’ of the fit measure compensates for a
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zero value of that measure. This is necessary to guarantee a trade-off between
the size and fit criteria. For more details, see below.)

Definition 6. Let n ≥ 1 be a truncation constant, and let c ∈ [0, 0.01] be a
non-negative shift constant. The measure κ is defined by

κ = m2(m1 − c) =
∑

K∈K ρ2(K)∑
K∈Knt

ρ2(K)

(∑
K∈K ρ2(K) − ρ(Rmax)

1 − ρ(Rmax)
− c

)
.

Some remarks are in order with respect to κ.

1. It holds −∞ < κ ≤ −c.

2. For c = 0, κ = −c(= 0) iff m1 = 0, with in general arbitrary values of
m2. In other words, κ assumes its extreme value in the case of, and only
of, ‘complete association’ as described for the fit measure m1, and there is
no indication about the size component as measured by the size measure
m2. In that case,

∑
K∈K ρ(K) = 1, and there is a total fit of K to the data.

(If κ = m2m1, that is, c = 0, a zero value of the fit measure m1 would
eliminate the impact of the size measure m2 on the values of κ. Regardless
of any value m2 may take, κ would always be equal to zero. In that case,
κ would not trade off the size and fit components.)

3. For c 6= 0, κ = −c(< 0) iff m1 = 0 and m2 = 1. In other words, κ assumes
its extreme value in the case of, and only of, ‘complete associations’ as
described for the measures m1 and m2. In that case, (a)

∑
K∈K ρ(K) = 1,

and there is a total fit of K to the data, and (b) ρ(K) = 0 for any K ∈ K,
K 6∈ Knt, and the size of K can actually be reduced to |Knt|.

4. Larger values of κ imply larger values of m1, or smaller values of m2, or
both. That is, if κ(K1) and κ(K2) denote the measure κ calculated for
the knowledge structures K1 and K2, respectively, κ(K1) < κ(K2) implies
m1(K1) < m1(K2) or m2(K1) > m2(K2). The reverse needs not to be true
in general. However, m1(K1) < m1(K2) and m2(K1) > m2(K2) implies
κ(K1) < κ(K2).

5. The afore mentioned remark can be rephrased in operational parlance of
the prediction paradigm. Larger values of κ imply larger probabilities of
a prediction success, or larger relative probabilities of a prediction success
for n-truncations, or both. In that case, K2 ‘performs better’ than K1

with respect to at least one of the criteria size and fit. If K2 ‘performs
better’ than K1 with respect to both of the criteria, it necessarily holds
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κ(K1) < κ(K2). If K2 ‘performs better’ than K1 with respect to one of the
two criteria only, κ(K1) < κ(K2) may not be true in general.

Inserting the MLEs m̂1 and m̂2 for m1 and m2, respectively, we obtain the
MLE κ̂ for κ,

κ̂ = m̂2(m̂1 − c) =
∑

K∈K N(K)2∑
K∈dKnt

N(K)2

(∑
K∈K N(K)2 − N · N(R′

max)
N2 − N · N(R′

max)
− c

)
.

The decision rule for applications of κ is as follows. The greater the (popu-
lation) value of κ is, the ‘better’ a knowledge structure ‘performs’ with respect
to a trade-off between the criteria size and fit. The unknown ordering of the
(population) κ values is estimated by the ordering of the corresponding MLEs.

4.5 Model selection and truncation constant

Next we describe a special choice for the truncation constant. That special
truncation constant is derived in the context of ‘model selection’ among compet-
ing knowledge structures, say, K1, . . . ,Kp (on a domain Q).

The definition of the special truncation constant is based on the notion of
the median match of the competing models under consideration. Let vi = |{K ∈
Ki : ρ(K) 6= 0}| be the match of the candidate model Ki (1 ≤ i ≤ p). Let
v = (v1, . . . , vp) be the match vector of the ‘model selection’ problem. The
(empirical) median of the matches vi is denoted by median(v), and is called the
median match of the competing models of the ‘model selection’ problem. That
is,

median(v) =

{
v( p+1

2
) : odd p

v( p
2
) : even p

where v(1), . . . , v(p) with v(1) ≤ · · · ≤ v(p) is the ordered list of the matches vi.
For efficient applications of adaptive knowledge assessment procedures (Doign-

on and Falmagne, 1999), knowledge structures of a ‘trade-off type’ are beneficial.
On the one hand, a knowledge structure should fit the data as well as possible,
but on the other hand, it should also be of a smaller size. A trade-off between
these criteria allows for an economic diagnosis of the knowledge state of an ex-
aminee; in general, for a knowledge structure of a smaller size only a fewer items
have to be answered by an examinee to assess her/his knowledge state. The half-
split rule in deterministic knowledge assessment, for instance, generally requires
about log2(|K|) items for the diagnosis. (At this point it should be clear why
a knowledge structure is not preferred to consist of all subsets of an item set.
In such a case, no dependencies between the items would be postulated (except
for reflexive ones), and hence all items of the domain would have to be worked
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through by an examinee. Compare also the simulation example in Section 6.) In
other words, the measure κ (as a size/fit trade-off procedure) allows for a ‘poorer’
(descriptive) fit of a knowledge structure in favor of a smaller size.

The definition of the special truncation constant is furthermore based on the
term 2|Q|/2. This term is introduced to express the extent to which a knowledge
structure may be ‘tailored’ to n-truncations of sizes bounded from above by 2|Q|/2.
(The half-split rule using a knowledge structure of a size bounded from above by
2|Q|/2, generally requires about at most half of the items for the diagnosis of the
knowledge state of an examinee (log2(|K|) ≤ log2(2|Q|/2) = |Q|/2).)

The special truncation constant ns is defined by

ns = min
(
[2|Q|/2],median(v)

)
,

where for a real number x ≥ 0, [x] denotes the entier of x, that is, the non-
negative integer k with k ≤ x < k + 1.

The MLE for the (population) special truncation constant is

n̂s = min
(
[2|Q|/2],median(v̂)

)
,

where v̂i = |{K ∈ Ki : N(K) 6= 0}| (1 ≤ i ≤ p) and v̂ = (v̂1, . . . , v̂p) are the
MLEs for the (population) matches and match vector, respectively.

4.6 Summary

In the example in Section 6, the measure κ is applied using the special trun-
cation constant. Next we summarize the (population) κ procedure based on the
special truncation constant, and the corresponding MLE in terms of the data.

Consider the ‘model selection’ problem

K1, . . . ,Kp

with knowledge structures Ki on Q. Assume that for the multinomial probability
distribution on the response patterns, it holds

1. ρ(Rmax) 6= 1 (Rmax ⊂ Q with ρ(Rmax) = maxR⊂Q ρ(R));

2.
∑

K∈Ki
ρ(K) 6= 0 for any Ki.

Let ns be the (population) special truncation constant, and let c ∈ [0, 0.01] be a
shift constant.

Under these conditions the (population) κ(Ki) values for the knowledge struc-
tures Ki are well-defined,

κ(Ki) =

∑
K∈Ki

ρ2(K)∑
K∈Kinst

ρ2(K)

(∑
K∈Ki

ρ2(K) − ρ(Rmax)
1 − ρ(Rmax)

− c

)
.
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Let N(R) for R ⊂ Q be the data, and let N =
∑

R⊂Q N(R) be large. Assume
that

1. N(R′
max) 6= N (R′

max ⊂ Q with N(R′
max) = maxR⊂Q N(R));

2.
∑

K∈Ki
N(K) 6= 0 for any Ki.

Inserting (sample) MLEs

N(K)/N for ρ(K) (K ∈ Ki),

we obtain the (sample) MLE κ̂(Ki) for κ(Ki),

κ̂(Ki) =

∑
K∈Ki

N(K)2∑
K∈K̂icnst

N(K)2

(∑
K∈Ki

N(K)2 − N · N(R′
max)

N2 − N · N(R′
max)

− c

)
,

where n̂s is the (sample) MLE for ns, and K̂icnst is analogously defined as Kicnst,
replacing occurrence probabilities ρ(K) with their MLEs N(K)/N (for knowledge
states K ∈ Ki).

Note that all Ki (1 ≤ i ≤ p) are used for determining the (population) ns and
(sample) n̂s values, and based on these ns and n̂s values, the (population) κ(Ki)
and (sample) κ̂(Ki) values are obtained for each model separately, respectively.

Eventually, a model Ki0 (1 ≤ i0 ≤ p) is selected for which κ̂(Ki0) is maximum,
that is,

κ̂(Ki0) = max
1≤i≤p

κ̂(Ki).

5. Modified Item Tree Analysis

This section describes how the candidate competing models are obtained data-
analytically, based on a modified version of Leeuwe’s (1974) Item Tree Analysis.
(Though we pursue a data-analytic approach, any other method for determining
the competing models is conceivable. The measure κ can be applied to any
‘model selection’ problem among competing knowledge structures, independent
of how the models may be obtained. For instance, κ may be used for selecting
among knowledge structures theoretically derived from different psychological
theories/postulates.)

5.1 Item Tree Analysis

This section reviews Leeuwe’s (1974) Item Tree Analysis (ITA); see also Ünlü
and Albert (2004).

ITA consists of five steps, STEP1–STEP5:
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STEP1. Determine the binary relations ≺L for L = 0, 1, . . . , N according to the
ITA-rule

Ii ≺L Ij iff cij ≤ L.

Here we use the notation Q = {Il : 1 ≤ l ≤ m}, and for any two items
Ii and Ij in Q, cij denotes the absolute count of examinees solving Ij but
not Ii. The tolerance level L quantifies the allowed maximum number of
contradictions to an item pair in the relation ≺L.

STEP2. From the generated binary relations ≺L (0 ≤ L ≤ N), remove those
that are not transitive.

STEP3. Set a critical value 0 < c ≤ 1 for the proportions pL of examinees not
contradicting the respective surmise relations ≺L in STEP2.

STEP4. From the surmise relations in STEP2, remove those with pL < c.

STEP5. From the remaining surmise relations (after STEP4)—≺0 is always
contained—select one with maximum CA value.

(The Correlational Agreement Coefficient is used as a goodness-of-fit measure
to handle the selection problem in STEP5. From the remaining surmise relations,
select an ‘optimal’ one, here, one with maximum CA value.)

5.2 Modified version of item tree analysis

A modified version of ITA (MITA) is as follows. We keep the ITA-rule for
generating the binary relations ≺′

L for 0 ≤ L ≤ N . However, we do not remove
those relations ≺′

L that are not transitive, as it is done in the original ITA proce-
dure. Instead, we take the transitive closure of such a binary relation turning it to
a surmise relation. Moreover, the other steps of ITA are not considered anymore.
This yields a collection of candidate models which contains the models derived
from ITA. Eventually, from the collection of candidate surmise relation models,
we select an ‘optimal’ one, here, one with maximum κ value. (Note that Theorem
1 is crucial at this point. We select among the quasi-ordinal knowledge spaces
corresponding to the surmise relations according to Theorem 1. The measure κ
is formulated at the level of persons, for knowledge structures.)

This is the fully-automated version of MITA. In a user-controlled version,
the user may narrow down this collection of competing models to a smaller one,
based on important factors (e.g., psychological theory) not captured by the data
analysis solely. (The fully-automated version of MITA is illustrated in Section
6.)

MITA consists of three steps, STEP1–STEP3:
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STEP1. Determine the binary relations ≺′
L for L = 0, 1, . . . , N according to the

ITA-rule.

STEP2. Take the transitive closure for all ≺′
L (0 ≤ L ≤ N). Consider the col-

lection of (quasi-ordinal) knowledge spaces corresponding to those surmise
relations according to Theorem 1. In the fully-automated version of MITA,
these knowledge spaces constitute the final collection of competing models.
In a user-controlled version, that collection is further narrowed down to a
smaller sub-collection, based on important factors not captured by the data
analysis solely.

STEP3. From the collection of knowledge structure models in STEP2, select
one with maximum κ value.

6. Simulation Example

This section describes an application of the coefficients κ and CA. Their
performances as selection measures are compared in a simulation study using the
BLIM (Definition 4). (The computer programs (in C) for the computations in
this section can be obtained from the first author.)

a
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Figure 2: Hasse diagram of the true model (Q,≺K)

6.1 Data generating model

We consider the knowledge structure

K =
{
∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}, {a, b, c, e}, Q

}
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on the domain Q = {a, b, c, d, e}. The Hasse diagram of the surmise relation ≺K
derived from K according to Theorem 1 is shown in Figure 2.

We assume that the knowledge states of K occur in the population under
reference with the probabilities

p(∅) = 0.04,

p({a}) = 0.10,

p({b}) = 0.06,

p({a, b}) = 0.12,

p({a, b, c}) = 0.11,

p({a, b, d}) = 0.07,

p({a, b, c, d}) = 0.13,

p({a, b, c, e}) = 0.18,

p(Q) = 0.19.

Let the careless error and lucky guess probabilities βq and ηq at the items
q ∈ Q, respectively, be specified as

βa = 0.16, ηa = 0.04,

βb = 0.18, ηb = 0.10,

βc = 0.20, ηc = 0.01,

βd = 0.14, ηd = 0.02,

βe = 0.24, ηe = 0.05.

This BLIM was used for the simulation of the data (Section 6.2). Note that
the specification of the model parameters p(K) (K ∈ K) and βq, ηq (q ∈ Q) is
a realistic one. We do not assume a single response error rate over all items;
the careless error and lucky guess rates vary from item to item. We do not
assume a uniform probability distribution on K; the knowledge states occur with
different proportions in the population under reference. Furthermore, from an
empirical point of view, the lower values for the lucky guess rates do not cause
concern, because guessing effects can nearly be eliminated by appropriate item
formulation.

6.2 Simulated data

We simulated a binary (of type 0/1) 1 200×5 data matrix of response patterns
for 1 200 fictitious subjects. The data matrix contains all of the 32 possible
response patterns, hence 1 168 response patterns are duplicates. This matrix of
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item scores is displayed in Table 1. (The 32 response patterns are shown with
their absolute frequencies in the data. There are 73 response patterns ‘00000’ (no
item solved) and 88 response patterns ‘11111’ (all items solved).)

Table 1: Simulated data for 1 200 fictitious subjects

Pattern Freq Pattern Freq Pattern Freq Pattern Freq

11001 32 11100 109 01001 13 00001 4
00000 73 11111 88 11000 142 10000 120
11101 110 01000 90 10001 9 01101 16
11110 89 11010 70 00010 5 01100 24
00100 6 01110 16 11011 28 10100 20
01011 4 00101 6 10101 24 10111 21
10010 22 00111 2 01111 13 10110 16
01010 16 00110 6 00011 1 10011 5

Table 2: Values of CA and κ

L CA κ

LCA = 0-58 0.962466 −0.098487
59-62 0.958352 −0.098591
63-71 0.953836 −0.098672
72-77 0.947492 −0.098807
78-88 0.940130 −0.098880
89-95 0.932003 −0.098931
96-100 0.933715 −0.099029
101-150 (true) 0.924552 −0.099040
151-191 0.900744 −0.098871
Lκ = 192-213 0.833439 −0.097610

214-236 0.768970 −0.098913
237-239 0.752954 −0.102439
240-285 0.744859 −0.108678
286-394 0.684268 −0.118036
395-1 200 0.319707 −0.133919

6.3 Results: MITA of simulated data

We describe the results of an application of MITA to the simulated BLIM
data.

We determined the binary relations ≺′
L (0 ≤ L ≤ N = 1200) according to

the ITA-rule, and their transitive closures ≺L (0 ≤ L ≤ 1 200). This resulted in
a collection of 15 surmise relations, respectively, a collection of 15 (quasi-ordinal)
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knowledge spaces. These collections contained the true models underlying the
data, ≺K and K, respectively. (A complete list of the competing surmise relation
and knowledge structure models in this example can be obtained from the first
author.) From these collections, we selected ‘optimal’ models with maximum CA
and κ values. Table 2 reports the values of CA and κ. (For ns and c = 0.01.
Models are labeled with their tolerance levels. The true model is indicated by
‘(true)’. LCA and Lκ denote maximum CA and κ solutions, respectively. A
notation ‘0-58’ means that the same surmise relation and knowledge space were
obtained for the tolerance levels 0 ≤ L ≤ 58.)

The coefficient CA decreases steadily (except for L = 96-100) with its max-
imum value assumed at the lowest tolerance range LCA = 0-58. The ‘optimal’
surmise relation selected based on CA is ≺0-58, which is the diagonal i ≺0-58 i
(i ∈ Q). It consists of 5 item pairs of altogether 52 = 25 possible pairs (20%).
The knowledge space K0-58 is the set of all subsets of Q, consisting of 32 knowl-
edge states (log2(|K0-58|) = 5). These ‘best’ solutions based on CA do not reflect
the true models at all. The true surmise relation ≺K (= ≺101-150) and knowledge
space K (= K101-150) consist of 12 item pairs and 9 knowledge states, respectively.

The coefficient κ assumes its maximum value at the tolerance range Lκ =
192-213. The ‘optimal’ knowledge space selected based on κ is

K192-213 =
{
∅, {a}, {a, b}, {a, b, c}, {a, b, c, d}, {a, b, c, e}, Q

}
.

It consists of 7 knowledge states (log2(|K192-213|) ≈ 2.81). The surmise relation
≺192-213 is ‘appropriately sized’ (14 item pairs; 56% of all possible pairs). Its
Hasse diagram is shown in Figure 3.

a

b

c

ed

B
B

B
BB

£
£
£
££

Figure 3: Hasse diagram of the data-analytic solution (Q,≺192-213)

Compared to the true models underlying the simulation, these ‘best’ solutions
based on κ are quite acceptable. In ≺K, the items a and b, and c and d are not
comparable, whereas in ≺192-213, we have a ≺192-213 b and c ≺192-213 d. In all
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other respects, the two surmise relations are identical. We have | ≺K | = 12
versus | ≺192-213 | = 14 (≺K ⊂ ≺192-213). In K, the subsets {b} and {a, b, d}
are knowledge states, whereas in K192-213, they are not. In all other respects,
the two knowledge spaces are identical. We have |K| = 9 versus |K192-213| = 7
(K192-213 ⊂ K).

7. Discussion

7.1 Summary

In this article, we have proposed a ‘Goodman-Kruskal type’ measure κ for
selecting among competing knowledge structure models in KST, as underlying
latent explanations for discrete multivariate response data. We have utilized
this measure in a new ‘ITA type’ data-analytic method for detecting knowledge
structures from data.

This measure κ is suited for nominal data and is (operationally) interpretable
in terms of prediction error (success) probabilities of a prediction paradigm. It
is designed to combine and trade off the (descriptive) fit and size of a knowledge
structure, which is of high interest in KST, especially in the context of adaptive
knowledge assessment procedures.

We have compared κ with the Correlational Agreement Coefficient CA, which
has been recently discussed as a selection measure for competing surmise relation
models. The performances of the two coefficients have been investigated in a
simulation study using the fundamental BLIM in KST. Based on the proposed
MITA method, the candidate competing surmise relation and knowledge struc-
ture models have been obtained. The ‘optimal’ solutions based on CA have not
reflected the true models at all, whereas the solutions based on κ have been quite
acceptable.

7.2 Further research

The current simulation study is a starting point for more in-depth analyses
of the measure κ. Further research may address in systematic, extensive simu-
lation studies the effects of the variation of the sample size (especially for small
sample sizes), the underlying knowledge structure model, and the BLIM param-
eters. In particular, inferential (asymptotic) statistics (e.g., confidence intervals)
and applications to real psychological test data are important and indispensable
directions for future research.

Measures of a ‘Goodman-Kruskal type’ could also be derived within the order-
theoretic (at the level of items) formulation of KST, for surmise relations or
even surmise systems. The relationship between the set-theoretic and order-
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theoretic measures could then be investigated. In particular, alternative data
analysis methods of an ‘ITA type’ could be derived, and these procedures could be
compared with each other, and especially with other available related or unrelated
data-analytic methods.
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