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Abstract: Analysis of spatial panel data is of great importance and inter-
est in spatial econometrics. Here we consider cigarette demand in a spatial
panel of 46 states of the US over a 30-year period. We construct a de-
mand equation to examine the elasticity of per pack cigarette price and per
capita disposable income. The existing spatial panel models account for both
spatial autocorrelation and state-wise heterogeneity, but fail to account for
temporal autocorrelation. Thus we propose new spatial panel models and
adopt a fully Bayesian approach for model parameter inference and predic-
tion of cigarette demand at future time points using MCMC. We conclude
that the spatial panel model that accounts for state-wise heterogeneity, spa-
tial dependence, and temporal dependence clearly outperforms the existing
models. Analysis based on the new model suggests a negative cigarette price
elasticity but a positive income elasticity.
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1. Introduction

In econometric terms, panel data are observations aggregated on a cross-
section over multiple time periods. In the case of cross sections of spatial regions
such as counties in a state, states in a country, or countries around the world,
panel data are referred to as spatial panels (Anselin, 1988; Baltagi, 2005). Here
we examine a demand equation that relates cigarette consumption to cigarette
price and per capita disposable income. The federal government of the US has
made serious effort through major policy interventions to reduce the consumption
of cigarettes since the 1960’s. However some of the major policy interventions are
not without controversy, an example being the Congressional ban of broadcast
advertising of cigarettes in 1971 after the application of the Fairness Doctrine
Act to cigarette advertising in 1967. The banning of pro-smoking messages from
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television and radio have eliminated anti-smoking messages, as it is no longer a
requirement for these stations to adhere to the Fairness Doctrine Act. If anti-
smoking messages are more effective than pro-smoking messages, then the net
effect of the 1971 advertising ban may actually be an increase in the cigarette
consumption. To assess this net effect and the effectiveness of other major policy
interventions, it is important to properly construct and estimate the cigarette
demand equation (Hamilton, 1972; Baltagi and Levin, 1986).
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Figure 1: Gray-scaled maps of cigarette sales in a few selected years 1963, 1973,
1983 and 1992.

The data set consists of a panel of 46 states of the United States from 1963
to 1992. The response variable here is the real per capita sales of cigarettes by
persons of smoking age (14 years and older) measured in packs per person on the
log scale (henceforth “cigarette sales”). See Figure 1 for maps of cigarette sales in
a few selected years. Two explanatory variables are considered for constructing
the demand equation. The first explanatory variable is the average retail price of
a pack of cigarettes measured in real terms on the log scale (henceforth “cigarette
price”). The second explanatory variable is the real per capita disposable income
of each state on the log scale (henceforth “income”). Following the convention in
econometrics, all three variables, cigarette sales, cigarette price, and income, are
on the log scale, so that the coefficients in the demand equation would represent
elasticities.
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While cigarette taxation is meant to deter cigarette consumption, it is still
difficult to quantify the price elasticity of demand for cigarettes. One challenge is
to account for spatial dependence between neighboring states, which may be at-
tributed to economic phenomena such as bootlegging when consumers in a state
of higher cigarette tax attempt to buy cigarettes in a bordering state of lower
cigarette tax. Other challenges are to account for differences among different
states or among different time points, which we will refer to as heterogeneity
across states or heterogeneity over time. The effect of income on cigarette con-
sumption can be ambiguous. On one hand, if cigarette is a normal good, higher
income would lead to more consumption. On the other hand, more education,
usually positively associated with higher income, would lead to less cigarette
consumption. See Baltagi and Llevin (1986) and Baltagi and Li (2004) for more
details.

Baltagi and levin (1986) were the first to consider this spatial panel from 1963
to 1980 and constructed a dynamic demand equation for cigarettes to address sev-
eral major policy issues. Their data analysis yielded a significant negative effect
of cigarette price on cigarette consumption with a price elasticity of −0.2, while
there was no effect of income on cigarette consumption with an insignificant in-
come elasticity. Furthermore, they modeled the bootlegging effect directly by
incorporating the lowest cigarette price in neighboring states as an additional
explanatory variable and found the effect of bootlegging to be statistically sig-
nificant. In light of these data analysis results, they concluded that cigarette
taxation was an effective tool for generating revenues despite the spillover effects
to neighboring states where bootlegging was significant.

More recently, Baltagi and Li (2004) considered the same spatial panel with
the time period updated to range from 1963 to 1992. They constructed a simple
demand equation for cigarettes to examine the elasticity of cigarette price and
that of income. They also modeled the bootlegging effect but as a part of spa-
tial dependence, which may be thought of as an improvement of the explanatory
variable approach taken in Baltagi and Levin (1986). In addition, depending on
whether heterogeneity across states or over time was accounted for explicitly, the
resulting models were spatially and temporally homogeneous, or temporally het-
erogeneous, or spatially heterogeneous. Based on the performance of prediction,
they concluded that it was important to take into account spatial dependence
and spatial heterogeneity.

There are, however, some unresolved issues in Baltagi and Li (2004). First,
the models assume independence over time while allowing for dependence across
space. It would be interesting and, as it turns out, necessary to account for both
spatial dependence and temporal dependence for the cigarette demand data. One
of the main reasons that temporal dependence is not accounted for in these spatial
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panel models is due to computational difficulties involved in optimization over
a high dimensional parameter space for obtaining the maximum likelihood esti-
mates (MLE). Chen and Conley (2001) considered semiparametric estimation of
spatial panel data models. Kapoor et al. (2006) proposed a method of moments
estimator for a spatial panel data model. Driscoll and Kraay (1998) considered
estimation of such models with unspecified spatial correlation. However, none of
these models accounted for spatial dependence and temporal dependence simul-
taneously. See Elhorst (2003) and Anselin (2006) for a survey of spatial panel
data models.

With the advances in computing technology and in Markov chain Monte Carlo
(MCMC) algorithms, there is now ample opportunity to resolve these computa-
tional difficulties in spatial panel data analysis and consider more complex and
thus more realistic spatial panel models. Here we consider generalizing the spatial
panel models in Baltagi and Li (2004) to account for not only spatial dependence
but also temporal dependence. In statistical terms, spatial panel data may be
viewed as repeated measures of spatially aggregated data. Thus the models pro-
posed here can be viewed as spatial-temporal statistical models for spatial panel
data. For statistical inference, we use Bayesian hierarchical models as an al-
ternative to maximum likelihood. We develop MCMC algorithms for obtaining
the posterior distributions of model parameters, as well as posterior predictive
distributions of cigarette demand at future time points.

Our contribution is that, for the cigarette demand data, our general spatial-
temporal models provide a significant improvement over the existing spatial panel
models in terms of model fitting as well as predictive power. We also show that
the analysis results are comparable between MLE and Bayesian inference in the
existing spatial panel models, while our Bayesian inference is still computation-
ally feasible for the more complex spatial-temporal models. Furthermore, our
approach provides direct statistical inference of spatial and temporal dependence
in a panel data model, which, to our knowledge, has not been accomplished be-
fore. While Baltagi et al. (2006) considered the Lagrangian-Multiplier tests for
similar models, these tests rely on the restricted model only and thus can not in-
fer the unrestricted spatial-temporal model. In contrast, we provide the posterior
distribution of spatial and temporal dependence in the unrestricted model. Fi-
nally, although spatial-temporal statistics have been applied to many disciplines
such as ecology (Zhu et al. (2005, 2007) and epidemiology Waller et al. (1997),
we believe that our spatial-temporal models and the Bayesian inference are novel
for the analysis of spatial panel data in general. With greater availability of and
a growing interest in spatial panel data, the work presented here would advance
the capability of analyzing spatial panel data in practice and thus impact the
field of spatial econometrics.
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The remainder of the paper is organized as follows. We review the existing
spatial panel models and propose new Bayesian inference in Section 2. Then in
Section 3, we develop new spatial-temporal models for spatial panel data and
again propose Bayesian inference. Analysis results of the cigarette demand data
using both the existing and the new models are shown in Section 4. Model
comparisons based on an information criterion and prediction performance are
given in Section 5, followed by a brief conclusion in

2. Bayesian Inference for the Existing Spatial Panel Models

Here we review the spatial panel models considered in Baltagi and Li (2004)
and propose a Bayesian hierarchical model for statistical inference. Following
the notation in Baltagi and Li (2004), we let yit, xit1, xit2 denote the variables of
cigarette sales, cigarette price, and income, respectively, in the ith state and the
tth year, where i = 1, · · · , N indexes the N = 46 states and t = 1, . . . , T indexes
the years starting from 1963. We will use the first T = 25 years (1963–1987)
for model building and set aside the last 5 years (1988–1992) for prediction and
model comparisons. The existing spatial panel model for cigarette demand is
expressed as,

yit = x′
itβ + εit, i = 1, . . . , N ; t = 1, . . . , T, (2.1)

where xit = (xit1, xit2)′ denotes the two explanatory variables, β = (β1, β2)′

denotes the corresponding regression coefficients, and εit is such that

εt = µt + φt, (2.2)

where, at time t and in all states, εt = (ε1t, . . . , εNt)′, µt = (µ1t, . . . , µNt)′ denotes
the vector of state effects, and φt = (φ1t, . . . , φNt)′ denotes the vector of distur-
bance which are assumed to be independent of µt. Further, φt follows a spatial
dependence model,

φt = λWφt + νt, (2.3)

where W denotes an N × N matrix of known normalized spatial weights based
on a pre-specified neighborhood structure, λ denotes a spatial autocorrelation
coefficient where λ is between the inverse of the smallest eigenvalue of W and
1, and νt = (ν1t, . . . , νNt)′ denotes white noise that are iid N(0, σ2

ν) and are
independent of φt and µt. The spatial dependence model in (2.3) is also known
as the simultaneous autoregressive (SAR) model (Cressie, 1993). In Sections 2.1-
2.4, we will consider different specifications of µt that give rise to four types of
spatial panel models, which we will refer to as homogeneous model, heterogeneous
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model, fixed-effects model, and random-effects model, similar to Baltagi and Li
(2004).

Now let yt = (y1t, . . . , yNt)′ denote the vector of the response variables and
let Xt = [x1t, . . . , xNt]′ denote the matrix of the explanatory variables in all
states at time t. Further let y = (y′1, . . . , y

′
T )′ and X = [X ′

1, . . . , X
′
T ]′ denote the

response and explanatory variables in all states and at all times. Then we have
the following distribution for the data at time t,

yt|β, µt, σ
2
ν , λ ∼ normal

(
Xtβ + µt, σ

2
ν(IN − λW )−1(IN − λW ′)−1

)
. (2.4)

Under the assumption of temporal independence, the distribution for the data at
all time points is,

y|β, µ, σ2
ν , λ ∼ normal

(
Xβ + µ, σ2

νIT ⊗ (IN − λW )−1(IN − λW ′)−1
)
(2.5)

where µ = (µ′
1, . . . , µ

′
T )′. In Baltagi and Li (2004), statistical inference of the spa-

tial panel models are via maximum likelihood and the maximization is performed
using the procedure optmum in the software package GAUSS. Here we propose a
Bayesian hierarchical model and devise MCMC algorithms for statistical inference
instead.

For the prior distributions, we let

β ∼ normal(β0, Γβ0), σ2
ν ∼ inverse gamma(σ2

ν0, γν0), λ ∼ uniform(w−1, 1)(2.6)

where w denotes the smallest eigenvalue of W so that the resulting spatial
variance-covariance matrix is positive definite. We will specify the prior distribu-
tion for {µt} in Sections 2.1-2.4. Even though here conjugate priors are used for
β, σ2

ν , and {µt}, the hyper parameters are chosen such that the priors are diffuse.
We perform sensitivity analysis to ensure that the posterior distribution is not
sensitive to these choices. We use a Gibbs sampler here for simulating from the
posterior distributions. For brevity, we present the full conditional distributions
for the Gibbs sampler while omitting the detailed derivation. The full conditional
distribution of β is,

β|y, {µt}, σ2
ν , λ ∼ normal(βn, Γβn), (2.7)

where βn = Γβn

(
Γ−1

β0 β0 + σ−2
ν

∑T
t=1 X ′

t(IN − λW ′)(IN − λW )(yt − µt)
)

and Γ−1
βn

= Γ−1
β0 + σ−2

ν

∑T
t=1 X ′

t(IN − λW ′)(IN − λW )Xt. The full conditional distribution
of σ2

ν is,

σ2
ν |y, β, {µt}, λ ∼ inverse gamma(σ2

νn, γνn), (2.8)

where σ2
νn = σ2

ν0+NT/2 and γνn = γν0+2−1
∑T

t=1(yt−Xtβ−µt)′(IN−λW ′)(IN−
λW )(yt−Xtβ−µt). The full conditional distribution of λ is not in closed-form and
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thus we use a Metropolis-Hastings algorithm with a normal distribution as the
proposal distribution. In the case λ = 0, the disturbance model does not account
for spatial dependence and reduces to white noise. The same Gibbs sampler
above can be applied, with omission of the Metropolis-Hastings algorithm for
simulating λ. We will specify the corresponding posterior distribution of µt in
Sections 2.1-2.4.

2.1 Homogeneous model

In the homogeneous model, the state effects are assumed to be state-homogeneous
and time-homogeneous with µt = µ1N , where µ is an overall mean and 1N de-
notes an N dimensional vector of 1’s. We use the following prior distribution for
µ,

µ ∼ normal(µ0, γµ0). (2.9)

Thus the full conditional distribution of µ is,

µ|y, β, σ2
ν , λ ∼ normal(µn, γµn), (2.10)

where µn = γµn(γ−1
µ0 µ0 + σ−2

ν

∑T
t=1 1′N (IN − λW ′)(IN − λW )(yt − Xtβ)) and

γµn =
(
γ−1

µ0 + σ−2
ν T1′N (IN − λW ′)(IN − λW )1N

)−1
. When λ = 0, the model

assumes spatial independence, which we will refer to as “homogeneous indepen-
dent model”. Otherwise when λ 6= 0, we will refer to the model as “homogeneous
spatial model”.

2.2 Heterogeneous model

In the heterogeneous model, the state effects are assumed to be state-homogeneous
but time-inhomogeneous with µt = µt1N , where µt is a mean across states at time
t. We let µ = (µ1, . . . , µT )′ denote the vector of these means over time. Also,
the regression coefficients and the spatial autocorrelation coefficient are assumed
to be state homogeneous and time-inhomogeneous with β = (β′

1, . . . , β
′
T )′ and

λ = (λ1, . . . , λT )′, where βt = (β1t, β2t)′. Then the distribution for the data at
time t is,

yt|βt, µt, σ
2
ν , λt ∼ normal

(
Xtβt + µt, σ

2
ν(IN − λtW )−1(IN − λtW

′)−1
)
.(2.11)

Thus the distribution for the data at all time points is,

y|β, µ, σ2
ν , λ ∼ normal

(
X̃β + µ, σ2

ν(INT − V )−1(INT − V ′)−1
)

, (2.12)
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where V = diag{λtW}T
t=1 and X̃ = (IT ⊗JN )X with JN a N ×2 matrix of all 1’s.

Let X̃t = (lt⊗JN )Xt where lt denotes the tth row of IT . Thus X̃ = [X̃
′
1, . . . , X̃

′
T ]′.

With the following prior distributions for β and σ2
ν ,

β ∼ normal(β0, Γβ0), σ2
ν ∼ inverse gamma(σ2

ν0, γν0), (2.13)

we obtain the full conditional distribution of β,

β|y, µ, σ2
ν , λ ∼ normal(βn, Γβn), (2.14)

where βn = Γβn

(
Γ−1

β0 β0 + σ−2
ν

∑T
t=1 X̃

′
t(IN − λtW

′)(IN − λtW )(yt − µt)
)
, Γ−1

βn =

Γ−1
β0 +σ−2

ν

∑T
t=1 X̃

′
t(IN−λtW

′)(IN−λtW )X̃t, and the full conditional distribution
of σ2

ν ,

σ2
ν |y, β, µ, λ ∼ inverse gamma(σ2

νn, γνn), (2.15)

where σ2
νn = σ2

ν0+NT/2 and γνn = γν0+2−1
∑T

t=1(yt−X̃tβ−µt)′(IN−λtW
′)(IN−

λtW )(yt − X̃tβ − µt). We let λt ∼ uniform(w−1, 1). We use the following prior
distribution for µ,

µ ∼ normal(µ0,Γµ0). (2.16)

Thus the full conditional distribution of µ is,

µ|y, β, σ2
ν , λ ∼ normal(µn, Γµn), (2.17)

where µn = Γµn(Γ−1
µ0 µ0 + σ−2

ν B), Γ−1
µn = Γ−1

µ0 + σ−2
ν A, A is a T × T diagonal

matrix with diagonal elements A(t, t) = 1′N (IN −λtW
′)(IN −λtW )1N and B is a

T dimensional vector with the tth element B(t) = 1′N (IN −λtW
′)(IN −λtW )(yt−

X̃tβ). When λ = 0, the model assumes spatial independence, which we will refer
to as “heterogeneous independent model”. Otherwise when λ 6= 0, we will refer
to the model as “heterogeneous spatial model”.

2.3 Fixed-effects model

In the fixed-effects model, the state effects are assumed to be time-homogeneous
but state-inhomogeneous with µt = µ̃ = (µ1, . . . , µN )′, where µi is a mean over
time for state i. We use the following prior distribution for µ̃,

µ̃ ∼ normal(µ0,Γµ0). (2.18)

Thus the full conditional distribution of µ̃ is,

µ̃|y, β, σ2
ν , λ ∼ normal(µn, Γµn), (2.19)
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where µn = Γµn(Γ−1
µ0 µ0 + σ−2

ν

∑T
t=1(IN − λW ′)(IN − λW )(yt −Xtβ)) and Γ−1

µn =
Γ−1

µ0 +σ−2
ν T (IN −λW ′)(IN −λW ). When λ = 0, the model assumes spatial inde-

pendence, which we will refer to as “fixed-effects independent model”. Otherwise
when λ 6= 0, we will refer to the model as “fixed-effects spatial model”.

2.4 Random-effects model

In the random-effects model, the state effects are assumed to be time-homogeneous
but state-inhomogeneous with µt = µ̃ = (µ1, . . . , µN )′, where µi’s are random
variables following iid normal(µ∗, σ2

µ). Then the full conditional distribution of µ̃
is,

µ̃|y, β, σ2
ν , λ, µ∗, σ2

µ ∼ normal(µn, Γµn), (2.20)

where µn = Γµn(σ−2
µ µ∗1N +σ−2

ν

∑T
t=1(IN −λW ′)(IN −λW )(yt−Xtβ)) and Γ−1

µn =
σ−2

µ IN + σ−2
ν T (IN −λW ′)(IN −λW ). We use the following prior distribution for

µ∗ and σ2
µ,

µ∗ ∼ normal(µ∗
0, γ

∗
µ0), σ2

µ ∼ inverse gamma(σ2
µ0, γµ0). (2.21)

The full conditional distribution of µ∗ is,

µ∗|µ̃, σ2
µ ∼ normal(µ∗

n, γ∗
µn), (2.22)

where µ∗
n = γ∗

µn((γ∗
µ0)

−1µ∗
0 + σ−2

µ 1′N µ̃) and γ∗
µn = ((γ∗

µ0)
−1 + Nσ−2

µ )−1. The full
conditional distribution of σ2

µ is,

σ2
µ|µ̃, µ∗ ∼ inverse gamma

(
σ2

µ0 + N/2, γµ0 + 2−1(µ̃ − µ∗1N )′(µ̃ − µ∗1N )
)
.(2.23)

When λ = 0, the model assumes spatial independence, which we will refer to as
“random-effects independent model”. Otherwise when λ 6= 0, we will refer to the
model as “random-effects spatial model”.

3. New Spatial Panel Models and Bayesian Inference

The existing spatial panel models assume temporal independence of cigarette
sales yt, which may not be appropriate. To account for potential temporal depen-
dence, we propose a spatial-temporal statistical model. Using the same notation
as in Section 2, we consider the same data model as (2.1) and the same model
for the state effect and disturbance as (2.2). But now, to account for temporal
dependence, we let φt follow a spatial-temporal dependence model,

φt = λWφt + ηφt−1 + νt, (3.1)
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where the new parameter η denotes a temporal autocorrelation coefficient and,
in addition, νt is white noise iid N(0, σ2

ν) and is independent of φt−1. In Sections
3.1-3.4, we will consider different specifications of µt that give rise to four new
spatial panel models, corresponding to the homogeneous model, heterogeneous
model, fixed-effects model, and random-effects model in Section 2.

Due to (3.1), we have the following distribution for the data at time t,

yt|yt−1, β, µt, µt−1, σ
2
ν , λ, η ∼ normal (µyt , Σyt) , (3.2)

where µyt = Xtβ + µt + η(IN − λW )−1(yt−1 −Xt−1β − µt−1) and Σyt = σ2
ν(IN −

λW )−1(IN − λW ′)−1. The spatial-temporal model may be viewed as a temporal
process with the transition probability (3.2). When η = 0, model (3.1) reduces
to (2.3). Thus the distribution for the data at all time points is,

y|β, µ, σ2
ν , λ, η ∼ normal

(
Xβ + µ, σ2

ν(INT − V )−1(INT − V ′)−1
)
, (3.3)

where µ = (µ′
1, . . . , µ

′
T )′ and

V =


λW 0 0 . . .
ηIN λW 0 . . .
0 ηIN λW . . .
...

...
...

. . .

 (3.4)

Then as in Section 2, we propose a Bayesian hierarchical model and devise MCMC
algorithms for statistical inference.

We use the same prior distributions as in Section 2 for β, σ2
ν and λ (see (2.6))

and a uniform prior for η,

η ∼ uniform(−1, 1). (3.5)

We will specify the prior distribution for {µt} in Sections 3.1-3.4. Again we choose
hyper parameters that ensure a diffuse prior for β, σ2

ν and {µt}. We also perform
sensitivity analysis to ensure that the posterior distribution is not sensitive to
these choices. We use a Gibbs sampler here for simulating from the posterior
distributions. Again for brevity we omit presenting the derivation of the full
conditional distributions. The full conditional distribution of β is,

β|y, {µt}, σ2
ν , λ, η ∼ normal(βn, Γβn), (3.6)

where βn = Γβn

(
Γ−1

β0 β0 + σ−2
ν X ′(INT − V ′)(INT − V )(y − µ)

)
and Γ−1

βn = Γ−1
β0 +

σ−2
ν X ′(INT − V ′)(INT − V )X. The full conditional distribution of σ2

ν is,

σ2
ν |y, β, {µt}, λ, η ∼ inverse gamma(σ2

νn, γνn), (3.7)
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where σ2
νn = σ2

ν0+NT/2 and γνn = γν0+2−1(y−Xβ−µ)′(INT −V ′)(INT −V )(y−
Xβ − µ). We use a Metropolis-Hastings algorithm with a normal distribution as
the proposal distribution to update λ and η. In the case λ = 0, the disturbance
model does not account for spatial dependence, but allows for temporal depen-
dence. The corresponding posterior distribution of µt will be specified in Sections
3.1-3.4 using notation that is consistent with that in Section 2.

3.1 Homogeneous model

In the homogeneous model, the state effects are µt = µ1N with an overall
mean µ. We use the same prior distribution as (2.9) for µ. Thus the full condi-
tional distribution of µ is,

µ|y, β, σ2
ν , λ, η ∼ normal(µn, γµn), (3.8)

where µn = γµn(γ−1
µ0 µ0 + σ−2

ν 1′NT (INT − V ′)(INT − V )(y − Xβ)) and γµn =
(γ−1

µ0 + σ−2
ν 1′NT (INT − V ′)(INT − V )1NT )−1. When λ = 0, the model assumes

spatial independence, which we will refer to as “homogeneous temporal model”.
Otherwise when λ 6= 0, we will refer to the model as “homogeneous spatial-
temporal model”.

3.2 Heterogeneous model

In the heterogeneous model, the state effects are µt = µt1N with a mean
across states µt at time t. We let µ = (µ1, . . . , µT )′ denote the vector of these
means over time. Also, the regression coefficients, spatial autocorrelation coef-
ficient and temporal autocorrelation coefficient are assumed to be state homo-
geneous but time-inhomogeneous with β = (β′

1, . . . , β
′
T )′, λ = (λ1, . . . , λT )′ and

η = (η1, . . . , ηT−1)′, where βt = (β1t, β2t)′. Then the distribution for the data at
time t is,

yt|yt−1, β, µ, σ2
ν , λ, η ∼ normal (µyt , Σyt) , (3.9)

where µyt = X̃tβ + µt + ηt−1(IN − λtW )−1(yt−1 − X̃t−1β − µt−1) and Σyt =
σ2

ν(IN − λtW )−1(IN − λtW
′)−1 with X̃ = (IT ⊗ JN )X. Thus the distribution for

the data at all time points is,

y|β, µ, σ2
ν , λ, η ∼ normal

(
X̃β + µ, σ2

ν(INT − V )−1(INT − V ′)−1
)

, (3.10)

where

V =


λ1W 0 0 . . .
η1IN λ2W 0 . . .

0 η2IN λ3W . . .
...

...
...

. . .
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For the same prior distributions of β and σ2
ν as (2.13), we obtain the full condi-

tional distribution of β,

β|y, µ, σ2
ν , λ, η ∼ normal(βn, Γβn), (3.11)

where βn = Γβn

(
Γ−1

β0 β0 + σ−2
ν X̃

′
(INT − V ′)(INT − V )(y − µ)

)
, Γ−1

βn = Γ−1
β0 +

σ−2
ν X̃

′
(INT − V ′)(INT − V )X̃, and the full conditional distribution of σ2

ν ,

σ2
ν |y, β, µ, λ, η ∼ inverse gamma(σ2

νn, γνn), (3.12)

where σ2
νn = σ2

ν0 + NT/2 and γνn = γν0 + 2−1(y − X̃β − µ)′(INT − V ′)(INT −
V )(y−X̃β−µ). For the flat prior distribution of η, we obtain the full conditional
distribution of η,

η|y, β, {µt}, σ2
ν , λ ∼ normal(ηn, Γηn), (3.13)

where ηn is a T − 1 dimensional vector with the tth element ηn = ((yt − Xtβ −
µt)′(yt −Xtβ − µt))−1((yt −Xtβ − µt)′(IN − λt+1W )(yt+1 −Xt+1β − µt+1)), and
Γηn is a (T − 1) × (T − 1) diagonal matrix with diagonal elements Γηn(t, t) =
(yt−Xtβ−µt)′(yt−Xtβ−µt))−1σ2

ν . We use the same prior distribution as (2.16)
for µ. Thus the full conditional distribution of µ is,

µ|y, β, σ2
ν , λ, η ∼ normal(µn,Γµn), (3.14)

where µn = Γµn(Γ−1
µ0 µ0 + σ−2

ν (IT ⊗ 1N )′(INT − V ′)(INT − V )(y − X̃β)) and
Γ−1

µn = Γ−1
µ0 +σ−2

ν (IT ⊗1N )′(INT −V ′)(INT −V )(IT ⊗1N ). When λ = 0, the model
assumes spatial independence, which we will refer to as “heterogeneous temporal
model”. Otherwise when λ 6= 0, we will refer to the model as “heterogeneous
spatial-temporal model”.

3.3 Fixed-effects model

In the fixed-effects model, the state effects µt = µ̃ = (µ1, . . . , µN )′ with µi a
mean over time for state i. We use the same prior distribution as (2.18) for µ̃.
Thus the full conditional distribution of µ̃ is,

µ̃|y, β, σ2
ν , λ, η ∼ normal(µn,Γµn), (3.15)

where µn = Γµn(Γ−1
µ0 µ0 + σ−2

ν (1T ⊗ IN )′(INT − V ′)(INT − V )(y − Xβ)) and
Γ−1

µn = Γ−1
µ0 +σ−2

ν (1T ⊗IN )′(INT −V ′)(INT −V )(1T ⊗IN ). When λ = 0, the model
assumes spatial independence, which we will refer to as “fixed-effects temporal
model”. Otherwise when λ 6= 0, we will refer to the model as “fixed-effects
spatial-temporal model”.
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3.4 Random-effects model

In the random-effects model, the state effects µt = µ̃ = (µ1, . . . , µN )′ with
µi’s random variables following iid normal(µ∗, σ2

µ). Then the full conditional
distribution of µ̃ is,

µ̃|y, β, σ2
ν , λ, η, µ∗, σ2

µ ∼ normal(µn, Γµn), (3.16)

where µn = Γµn(σ−2
µ µ∗1N + σ−2

ν (1T ⊗ IN )′(INT − V ′)(INT − V )(y − Xβ)) and
Γ−1

µn = σ−2
µ IN + σ−2

ν (1T ⊗ IN )′(INT − V ′)(INT − V )(1T ⊗ IN ). The prior and
posterior distributions for µ∗ and σ2

µ are the same as (2.21)–(2.23) in Section 2.4.
When λ = 0, the model assumes spatial independence, which we will refer to as
“random-effects temporal model”. Otherwise when λ 6= 0, we will refer to the
model as “random-effects spatial-temporal model”.

Table 1: The central 95% credible intervals and the medians for the parameters
in (a) the independent models that ignore spatial and temporal dependence;
(b) the spatial models that account for spatial dependence. The abbreviations
are homo = homogeneous model, hetero = heterogeneous model, fixed = fixed-
effects model, random = random-effects models. Also reported are the deviance
information criterion (DIC) for each model fitting.

Model (a) Independent Models (b) Spatial Models

parameter homo hetero fixed random homo hetero fixed random

price 2.5% -0.718 -1.293 -0.515 -0.510 -1.005 -1.353 -0.847 -0.848
β1 50% -0.618 -1.172 -0.464 -0.460 -0.882 -1.236 -0.751 -0.747

97.5% -0.532 -1.058 -0.414 -0.400 -0.763 -1.105 -0.659 -0.646
income 2.5% 0.061 0.034 -0.291 -0.289 0.207 0.464 -0.198 -0.191

β2 50% 0.112 0.420 -0.252 -0.250 0.287 0.533 -0.105 -0.106
97.5% 0.167 0.484 -0.212 -0.204 0.377 0.600 0.009 0.008

spatial 2.5% - - - - 0.340 0.157 0.538 0.526
λ 50% - - - - 0.410 0.244 0.614 0.611

97.5% - - - - 0.487 0.344 0.687 0.693
DIC -547.0 -846.2 -2219.9 -1754.0 -665.0 -864.5 -2473.0 -1984.6

4. Analysis of Spatial Panel of Cigarette Demand

4.1 The existing spatial panel models

Table 1 summarizes the 2.5%, 50%, 97.5% percentiles of the posterior distri-
butions of the parameters in the existing spatial panel models. For the heteroge-
neous models, the time-inhomogeneous parameter estimates averaged over time
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are shown as in Table 3 of Baltagi and Li (2004). For the four spatial models, de-
tails of implementation of the Metropolis within Gibbs algorithm are as follows.
For the normal proposal distributions, we tune the standard deviations to reach
an average Hastings ratio between 0.2 and 0.7 as recommended in Gelman et al.
(2004). The total number of iterations in the Metropolis within Gibbs run is
500,000 with a burn-in length of 20,000. Then every 1, 000th of the Monto Carlo
samples are used to form a Monto Carlo sample of size 500.

The primary model parameters of interest are the elasticities of cigarette price
and income. In the case of price elasticity, the 95% credible intervals based on the
posterior distributions of the existing spatial panel models all suggest a significant
negative effect of cigarette price on cigarette sales. Specifically, for the indepen-
dent models, the homogeneous independent model gives a posterior median price
elasticity of -0.618, whereas the heterogeneous independent model yields an aver-
age posterior median price elasticity of -1.172. The posterior distributions of price
elasticity in the fixed-effects independent model and the random-effects indepen-
dent model are similar with posterior medians of -0.464 and -0.460 respectively,
which are smaller than those in the homogeneous and heterogeneous indepen-
dent models. For the corresponding four spatial models, the posterior median
price elasticities are -0.882, -1.236, -0.751 and -0.747, respectively. We note that
the posterior median price elasticities are larger in absolute values when spatial
dependence is accounted for, which suggests that when spatial dependence is
accounted for, cigarette price has a stronger effect on cigarette sales.

In the case of income elasticity, it is not quite clear what the relation is be-
tween cigarette sales and income. For the independent models, the posterior
median income elasticity in the homogeneous independent model is 0.112 and
the average posterior median income elasticity in the heterogeneous independent
model is 0.420. There is a significant positive effect of income on cigarette sales
based on the 95% credible intervals. However, the posterior median income elas-
ticities in the fixed-effects independent model and the random-effects independent
model are -0.252 and -0.250 respectively, indicating a negative relation between
cigarette sales and income. Based on the 95% credible intervals, these negative
price elasticities are also significant. When spatial autocorrelation is accounted
for, the posterior median income elasticities become larger in the homogeneous
spatial model and the heterogeneous spatial model with values 0.287 and 0.533
respectively. However, in the fixed-effects spatial model and the random-effects
spatial model, the income elasticities are no longer significant, based on the 95%
credible intervals.

The results of the spatial autocorrelation coefficient suggest strong positive
spatial dependence in the disturbance. The posterior median spatial autocorrela-
tion coefficient in the homogeneous spatial model is 0.410. In the heterogeneous
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spatial model, the average posterior median spatial autocorrelation coefficient
is 0.244, which is somewhat smaller. In the fixed-effects spatial model and the
random-effects spatial model, the posterior median spatial autocorrelation coeffi-
cients are 0.614 and 0.611 respectively, suggesting a stronger spatial dependence.
Based on the 95% credible intervals, the spatial dependence is significant. The
posterior medians of 0.614 and 0.611 are close to the MLEs of 0.61 and 0.65 in
Baltagi and Li (2004), where statistical inference is via maximum likelihood.

4.2 The new spatial panel models

Table 2 summarizes the 2.5%, 50%, 97.5% percentiles of the posterior distri-
butions of the new spatial panel models. For all the new models, details of the
implementation of the Metropolis within Gibbs algorithm are similar to Section
4.1.

Table 2: The central 95% credible intervals and the medians for the parameters
in (a) the temporal models that ignore spatial dependence; (b) the spatial-
temporal models that account for spatial dependence and temporal dependence.
The abbreviations are homo = homogeneous model, hetero = heterogeneous
model, fixed = fixed-effects model, random = random-effects models. Also
reported are the deviance information criterion (DIC) for each model fitting.

Model (a) Temporal Models (b) Spatial-Temporal Models

parameter homo hetero fixed random homo hetero fixed random

price 2.5% -0.460 -0.502 -0.370 -0.364 -0.451 -0.510 -0.373 -0.374
β1 50% -0.413 -0.429 -0.330 -0.325 -0.402 -0.430 -0.320 -0.336

97.5% -0.365 -0.350 -0.292 -0.280 -0.356 -0.344 -0.291 -0.298
income 2.5% 0.320 0.168 -0.016 -0.005 0.397 0.176 0.075 0.093

β2 50% 0.377 0.270 0.041 0.052 0.448 0.265 0.137 0.159
97.5% 0.439 0.360 0.109 0.109 0.506 0.363 0.1965 0.220

spatial 2.5% - - - - 0.047 0.002 0.061 0.059
λ 50% - - - - - 0.062 0.022 0.078 0.080

97.5% - - - - 0.078 0.045 0.098 0.104
temporal 2.5% 0.995 0.941 0.994 0.995 0.971 0.941 0.967 0.961

η 50% 0.999 0.953 0.998 0.998 0.984 0.952 0.986 0.983
97.5% 0.9999 0.964 0.999 0.999 0.998 0.963 0.999 0.998

DIC -3534.5 -3772.1 -4177.1 -3804.4 -3604.6 -3744.2 -4248.8 -4138.7

In the case of price elasticity, the 95% credible intervals based on the poste-
rior distributions of the new spatial panel models all suggest a significant negative
effect of cigarette price on cigarette sales. Specifically, for the temporal models
without spatial dependence, the homogeneous temporal model gives a posterior
median price elasticity of -0.413. The heterogeneous temporal model yields an
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average posterior median price elasticity of -0.429, which is slightly larger than
that in the homogeneous temporal model. The posterior distributions of price
elasticity for the fixed-effects temporal model and the random-effects temporal
model are similar with posterior medians of -0.330 and -0.325 respectively, which
are smaller than those in the homogeneous and heterogeneous temporal mod-
els. For the spatial-temporal models accounting for both spatial and temporal
dependence, the posterior median price elasticities are -0.402, -0.430,-0.320, and
-0.336, respectively, which are very close to the posterior median price elasticities
in the temporal models without spatial dependence. Furthermore, comparing the
posterior median price elasticities in the new spatial panel models to those in the
existing spatial panel models, we note that the posterior median price elasticities
are smaller when the temporal dependence is accounted for. That is, when the
temporal dependence is accounted for, cigarette price seems to have less effect on
cigarette sales.

In the case of income elasticity, among the temporal models without spatial
dependence, the posterior median income elasticity in the homogeneous temporal
model is 0.377 and the average posterior median income elasticity in the heteroge-
neous temporal model is 0.270. There is a significant positive effect of income on
cigarette sales based on the 95% credible intervals. However, in the fixed-effects
temporal model and the random-effects temporal model, the income elasticities
are not significant based on the 95% credible intervals. For the spatial-temporal
models accounting for both spatial and temporal dependence, the posterior me-
dian income elasticities are 0.448, 0.265, 0.137, and 0.159, respectively. The 95%
credible intervals based of these four models all suggest a significant positive ef-
fect of income on cigarette sales. Furthermore, comparing the posterior median
income elasticities in the new spatial panel models to those in the existing spatial
panel models, we note that the posterior median income elasticities in the homo-
geneous models and heterogeneous models all have positive signs. However, the
posterior median income elasticities are negative in the fixed-effects independent
model and the random-effects independent model, insignificant in the fixed-effects
spatial model, the random-effects spatial model, the fixed-effects temporal model
and the random-effects temporal model, and positive in the fixed-effects spatial-
temporal model and the random-effects spatial-temporal model.

As for spatial dependence, the posterior median spatial autocorrelation coeffi-
cients in the homogeneous spatial-temporal model, fixed-effects spatial-temporal
model and random-effects spatial-temporal model are 0.062, 0.078 and 0.080, re-
spectively. The average posterior median spatial coefficient in the heterogeneous
spatial-temporal model is 0.022. Based on the 95% credible intervals, the spatial
dependence is significant in all four models. Comparing the posterior median
spatial autocorrelation coefficients in the new spatial panel models to those in
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the existing spatial panel models, we note that the spatial dependence is much
weaker when the temporal dependence is accounted for. On the other hand, the
results of the temporal autocorrelation coefficient suggest a very strong positive
temporal dependence in the disturbance. The posterior median temporal auto-
correlation coefficients in all the new spatial panel models are very similar. Based
on the 95% credible intervals, the temporal dependence is significant. Given the
persistent nature of cigarette consumption behavior, it is important to take tem-
poral dependence into account. Indeed, our results reveal that it appears more
important to incorporate the temporal dependence than the spatial dependence.

5. Model Comparisons

5.1 Model selection based on DIC

Here we use deviance information criterion (DIC) to compare and select mod-
els (Spiegelhalter et al. (2002). Let θ denote the parameters in a given model.
Then the DIC is given by:

DIC = D̄(y) + pD,

where D̄(y) is the average deviance D(y, θ) averaged over the range of possible
parameter values (here all MCMC samples of θ from the posterior distribution),
and D(y, θ) is the Bayesian deviance defined as

D(y, θ) = −2 log p(y|θ).

where p(y|θ) is the likelihood function. The average deviance D̄(y) can be in-
terpreted as a Bayesian measure of model fitting. The term pD is the effective
number of parameters defined as

pD = D̄(y) − D(y, θ̄),

where θ̄ is the average of MCMC samples of θ. The term pD can be interpreted as
a measure of model complexity. A smaller value of D̄(y) indicates a better model
fit, while a smaller value of pD indicates a more parsimonious model. With the
two terms together, a smaller value of DIC indicates a better model.

Table 1 provides the DIC values for the existing spatial panel models. Among
the independent models, the homogeneous independent model has the largest DIC
value and the heterogeneous independent model has the second largest DIC value.
A substantial improvement occurs when state-wise heterogeneity is accounted for,
because the fixed-effects independent model and the random-effects independent
model give much smaller DIC values. Overall the fixed-effects model independent
has the smallest DIC value and is thus the best among the independent models.
Similar statements can be made about the DIC values of the spatial models.
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Figure 2: Posterior distribution of (a) cigarette price elasticity β1; (b) income
elasticity β2; (c) spatial autocorrelation coefficient λ; (d) temporal autocorre-
lation coefficient η in the spatial-temporal fixed-effects model.

Furthermore, comparing the DIC values to those of independent models, we note
that the models have somewhat lower DIC values when spatial dependence is
accounted for.

Table 2 provides the DIC values for the new spatial panel models. Among the
temporal models without spatial dependence, the homogeneous temporal model
has the largest DIC value and the heterogeneous temporal model has the sec-
ond largest DIC value. Accounting for the state-wise heterogeneity improves the
models slightly. The fixed-effects temporal model and the random-effects tempo-
ral model give smaller DIC values. Overall the fixed-effects temporal model has
the smallest DIC value and is thus the best among the temporal models. Similar
observations are made about DIC values of the spatial-temporal models. Com-
paring Table 2 to Table 1, the DIC values of the new spatial panel models are
much smaller than those of the existing spatial panel models, which suggests a
substantial improvement of model fitting when temporal dependence is accounted
for.

We show in Figure 2 the posterior distributions of the regression coefficients,
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the spatial autocorrelation coefficient, and the temporal autocorrelation coeffi-
cient for the fixed-effects spatial-temporal model, which is the best among all
the models. These posterior distributions show a significant negative relation be-
tween cigarette sales and cigarette price with a posterior median price elasticity
of -0.320, and a significant positive relation between cigarette sales and income
with a posterior median income elasticity of 0.137. According to economic theory,
if cigarette is considered normal, then a consumer with a higher income would
tend to buy more, which gives a positive income elasticity. On the other hand,
income is highly correlated with education. Since those with more education
are less likely to smoke, the income elasticity may be negative. The net effect,
according to this spatial panel of data, seems to be a positive income elasticity.
The temporal dependence is very strong with a posterior median temporal auto-
correlation coefficient of 0.986, while spatial dependence is relatively weak with
a posterior median spatial autocorrelation coefficient of 0.078.

Table 3: Root mean squared error of prediction using the existing spatial panel
models

Models 1988 1989 1990 1991 1992 1989–1992
homogeneous independent 0.1945 0.2020 0.2236 0.2223 0.2013 0.2091
homogeneous spatial 0.1864 0.1890 0.2074 0.2004 0.1770 0.1923
heterogeneous independent 0.1944 0.1918 0.2054 0.1941 0.1688 0.1913
heterogeneous spatial 0.1947 0.1909 0.2035 0.1914 0.1684 0.1901
fixed-effects independent 0.1165 0.1260 0.1616 0.1765 0.1701 0.1521
fixed-effects spatial 0.1055 0.1092 0.1402 0.1459 0.1475 0.1310
random-effects independent 0.1173 0.1272 0.1631 0.1781 0.1715 0.1534
random-effects spatial 0.1056 0.1094 0.1404 0.1462 0.1475 0.1311

5.2 Model validation based on prediction

For the existing spatial panel models assuming temporal independence, pre-
diction for 1988–1992 is made based on posterior predictive distribution. Let Ỹ =
(Y ′

T+1, . . . , Y
′
T+S)′ denote cigarette sales at future time points T + 1, . . . , T + S.

The posterior predictive distribution is

p(Ỹ |Y ) =
∫

p(Ỹ |θ)p(θ|Y )dθ

where the model parameters are θ = (β, µ, σ2
ν) for independent models and

θ = (β, µ, λ, σ2
ν) for spatial models. For each MCMC posterior sample of θ,

we generate Ỹ from the corresponding p(Ỹ |θ) evaluated at this θ.
For the new spatial panel models, prediction is made using the transition

probabilities specified in (3.2). In particular, for each MCMC sample of θ and
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the cigarette demand in the T th year, a sample of predicted cigarette demand in
46 states and the (T + 1)th year is drawn according to the distribution in (3.2).
Then based on the (T + 1)th year, a sample of predicted cigarette demand in the
(T +2)th year is drawn. This procedure is applied for five consecutive years from
1988 to 1992. Note that for the heterogeneous models, an average parameter
estimate averaged over time is used. In all models, an average predicted value
averaged over all MCMC samples of θ is used as the final predicted value.

For a given year, cigarette sales in 46 sates are predicted and then the cor-
responding root mean squared error (RMSE) is computed to assess prediction
accuracy. An RMSE is defined as the square root of the mean squared differ-
ence between the actual observations and the predicted values. Table 3 gives the
RMSE for prediction of cigarette demand for each year from 1988 to 1992 along
with the RMSE for all five years, based on the existing spatial panel models. We
focus our discussion on the RMSEs for all five years. Among the independent
models, the homogeneous independent model gives the largest RMSE of 0.2091.
The average heterogeneous independent model has a slightly smaller RMSE of
0.1913. By accounting for the state-wise heterogeneity, the fixed-effects indepen-
dent model and the random-effects independent model have even smaller RMSEs
of 0.1521 and 0.1534 respectively. Similarly, among the spatial models, the fixed-
effects spatial model and the random-effects spatial model give smaller RMSEs
of 0.1310 and 0.1311 respectively, while the homogeneous spatial model gives
the largest RMSE of 0.1923. The RMSE of the heterogeneous spatial model is
0.1901. Comparing the RMSEs in the spatial models to those in the independent
models, it is clear that accounting for spatial autocorrelation improves the pre-
diction by reducing the RMSE. Moreover, the model that accounts for state-wise
heterogeneity and spatial dependence is the best, according to the performance
of prediction. That is, the fixed-effects spatial model and the random-effects spa-
tial model are the best models among the existing spatial panel models. These
findings are consistent with those in Baltagi and Li (2004).

Table 4: Root mean squared error of prediction using the the new spatial panel
models

Models 1988 1989 1990 1991 1992 1989–1992
homogeneous temporal 0.0535 0.0741 0.1130 0.01239 0.1265 0.1025
homogeneous spatial-temporal 0.0462 0.0496 0.0735 0.0683 0.0808 0.0651
heterogeneous temporal 0.0579 0.0843 0.1292 0.1470 0.1498 0.1193
heterogeneous spatial-temporal 0.0559 0.0784 0.1204 0.1351 0.1351 0.1098
fixed-effects temporal 0.0509 0.0672 0.1054 0.1228 0.1235 0.0985
fixed-effects spatial-temporal 0.0469 0.0503 0.0772 0.0799 0.0880 0.0705
random-effects temporal 0.0479 0.0580 0.0863 0.0919 0.0921 0.0775
random-effects spatial-temporal 0.0462 0.0492 0.0764 0.0784 0.0878 0.0696
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Table 4 gives the RMSEs for the prediction of cigarette demand for each year
from 1988 to 1992 along with the RMSE for all five years, based on the new spa-
tial panel models. Among the temporal models, the RMSEs in the homogeneous
temporal model, the fixed-effects temporal model, and the random-effects tem-
poral model are 0.1025, 0.0985, and 0.0775, respectively, which are quite close in
value. The heterogeneous temporal model gives a slightly larger RMSE of 0.1193.
Again accounting for the spatial dependence yields smaller RMSEs. Among
the spatial-temporal models, the RMSEs for the homogeneous spatial-temporal
model, the fixed-effects spatial-temporal model, and the random-effects spatial-
temporal model are 0.0651, 0.0705, and 0.0696, respectively, which are again
quite close. The heterogeneous spatial-temporal model also gives a slightly larger
RMSE of 0.1098. Overall, the homogeneous spatial-temporal model, the fixed-
effects spatial-temporal model, and the random-effects spatial-temporal model
perform well in predicting cigarette demand. Comparing Table 4 to Table 3, the
RMSEs in the new spatial panel models are much smaller than those in the exist-
ing spatial panel models, which suggests that accounting for temporal dependence
improves prediction.

6. Conclusion and Discussion

In this article, we considered a demand equation to examine the effect of price
and income on cigarette demand, based on a spatial panel of 46 states of the US
over a 30-year period. We generalized the existing spatial panel models in Baltagi
and Li (2004) to account for not only spatial dependence but also temporal de-
pendence. For statistical inference, we adopted a fully Bayesian approach and de-
veloped MCMC algorithms to obtain posterior distributions of model parameters
and posterior predictive distributions of cigarette demand at future time points.
The proposed method here overcomes the computational obstacles in other ap-
proaches for similar models. We showed that the analysis results are comparable
between MLE in Baltagi and Li (2004) and our Bayesian inference, based on
the existing spatial panel models that do not account for temporal dependence.
Moreover our new spatial panel models provide significant improvement over the
existing spatial panel models in terms of model fitting and out-of-sample predic-
tive power. Based on the best fixed-effects spatial-temporal model, we found a
negative price elasticity as in Baltagi and Li (2004), but a positive income elas-
ticity contrary to Baltagi and Li (2004). This further suggests the importance of
accounting for spatial-temporal dependence simultaneously. We also found that
the temporal dependence of cigarette demand appears stronger than the spatial
dependence. Finally the methodology proposed here is suitable for spatial panel
data analysis in general and may be applied to a wider range of data sets in spatial
econometrics. Since the demand equation is of primary interest and the auto-
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correlation in the disturbance is of secondary interest, we have used a relatively
simple spatial-temporal model for the disturbance. Our modeling framework can
be extended to accommodate more complex spatial-temporal dependence struc-
ture. For example, (3.1) can be generalized from an autoregressive order of 1
to p to account for stronger time dependence. Similarly, the temporal term ηIN

in (3.4) can be extended to more general forms to feature spatial-temporal in-
teractions. For future research, it would be worthwhile to develop more general
classes of spatial-temporal models for the disturbance, while ensuring that the
computation remains feasible.
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