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Abstract: The spread of crises from one country to another, named “con-
tagion”, has been one of the most debated issues in international finance
in the last two decades. The presence of contagion can be detected by the
increase in conditional correlation during the crisis period compared to the
previous period. The paper presents a brief review of three of the most used
techniques to estimate conditional correlation: exponential weighted mov-
ing average, multivariate GARCH models and factor analysis with stochastic
volatility models. These methods are applied to analyze the contagion be-
tween the stock market of three major Latin American economies (Brazil,
Mexico and Argentina) and two emerging markets (Malaysia and Russia).
The data cover the period from 09/05/1995 to 12/30/2004, which includes
several crises. In general, the three methods yielded similar results, but
there is no general agreement. All the methods agreed that the contagion
occurred mostly during the Asian crisis.
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1. Introduction

The spread of crises from one country to another, named “contagion”, has
been one of the most debated issues in international finance in the last two
decades. Although there is a general agreement about the existence of this phe-
nomenon and about where it occurs, there is no consensus on the definition of
contagion (see Forbes and Rigobon 2001) and how to measure it or detect it.
In the analyzed period, we had the Tequila effect in December 1994 in Mexico;
the Asian Flu in 1997; the Russian Cold in August 1998 (including the LTCM
crisis); the Brazilian Sneeze in 1999; the Nasdaq fall in April 2000 and, a little
bit far from the 1990s, the Argentinian crisis at the end of 2001. The Asian
crisis is not well defined because we had an initial crisis in Thailand in June,
followed by a large decrease in the Indonesian market in August and finally the
Hong Kong market crash on October 17, 1997. We follow Forbes and Rigobon
(2002) and consider the start of the Asian crisis in October because, according to
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them, the Asian crisis started to make the headlines in the American and British
newspapers only after the crash of the Hong Kong market.

There are many definitions of contagion (see, for instance Forbes and Rigobon,
2001, Dornbush et al., 2001 , Corsetti et al., 2002) but no definition is universally
accepted and, as a consequence, there are many ways to measure it (see, for
instance, Rigobon, 2001). One of the earliest definitions of contagion, the “shift-
contagion”, regards contagion as a shift or change in how shocks spread from
one country to another between “normal” periods and “crisis” periods. One
way to measure it is through the conditional correlation between the return of
some market indices. Although there are some criticisms about this definition
and about the use of this measure (Pesaran and Rick, 2005), it has been used
in many works because it can at least indicate the presence of contagion and
be used as an exploratory tool. This definition was used by many authors; for
instance, by King and Wadhwani (1990), Baig and Goldfajn (1998), Edwards
(1998), Boyer et al. (1999), Bae et al. (2000), Loretan and English (2000),
Corsetti et al. (2002), Lopes and Migon (2002), Forbes and Rigobon (2002) and
Marçal and Valls Pereira (2005). Some of these authors consider that there is
evidence of contagion whenever there is a shift in the correlation, for instance,
Lopes and Migon (2002) and Marçal and Valls Pereira (2005). We consider that
there is evidence of contagion only when there is an increase in the correlation
during crisis periods.

This paper has two objectives: to briefly present some estimators for the con-
ditional correlation of the time series data and to apply them to measure the
contagion between some emerging Latin American markets (Argentina, Brazil
and Mexico) and two other emerging markets (Russia and Malaysia). Contrarily
to Forbes and Rigobon (2002), who only test for contagion in the country from
where the shock originates and spreads to other countries, we consider the pos-
sibility of contagion between countries from where the shocks did not originate.
In doing so, we consider that a shock originating from one country can increase
the correlation between two other countries. For instance, we will see that the
Asian crisis increased the correlation between the Brazilian and Mexican stock
market indices. Although this could not be strictly a contagion, we will call it a
contagion between these two countries for lack of a better name for it. In Sec-
tion 2, we present the exponential smoothing method, some multivariate GARCH
models and the factorial model using stochastic volatility models. The data set,
the exploratory analysis and filtering are presented in Section 3. The estimation
of the correlation of (conditional) volatilities by different methods are presented
in Section 4. Section 5 concludes.
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2. Methods for the Estimation of Conditional Correlation

Let rt = (rt,1, . . . , rt,N )> be a multivariate time series of returns, t = 1, . . . , T.
Assume that

rt = εtHt

εt ∼ IID(0, I)

where I is the identity matrix, εt are independent of past values of Ht, and Ht is a
constant conditioned on Ft−1, the information available up to time (t− 1). Then
E(rt|Ft−1) = 0 and V ar(rt|Ft−1) = Ht is the conditional covariance matrix of rt.
The elements of Ht are denoted by: hi,t for the conditional variances of the i-th
return and hij,t for the conditional covariance of the i-th and j-th returns. This
section presents some methods used to estimate the conditional correlation, i.e.
for estimating ρij,t = hij,t/

√
hi,thj,t). We always use the hat in order to denote

estimator or estimate.

2.1 Exponential smoothing method

In this method the conditional variance of the i-th series is evaluated recur-
sively through:

ĥi,t = λiĥi,t−1 + (1 − λi)r2
i,t, 0 < λi < 1, (2.1)

where 0 < λi < 1 is the smoothing parameter for the i-th series. Denoting the
estimate for the initial variance by ĥi,0, the estimates can be rewritten as:

ĥi,t = λt
iĥi,0 + (1 − λi)

t−1∑
j=0

λjr2
i,t−j , (2.2)

showing that ĥi,t is the weighted mean of present and past squared returns with
weights decaying exponentially to zero on observations further back into the past
history. A way to estimate the initial variance is to start the estimation at time
t1 and consider ĥt1,0 as the sample variance using the first t1 observations or to
use the sample variance of the whole series.

An alternative way is to estimate hit as:

ĥi,t = (1 − λi)
∞∑

j=0

λjr2
i,t−j , (2.3)
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where the square of the returns r2
i,t−j must be estimated for j ≥ t.

The estimate of the covariance between two time series at time t, hij,t, is
evaluated similarly to (2.2) as:

ĥij,t = λt
ij ĥij,0 + (1 − λij)

t−1∑
k=0

λkri,t−krj,t−k. (2.4)

The initial covariance can also be estimated similarly by the sample covariance
of all data or of the initial observations. We also have similar formulae to (2.1)
and (2.3).

The constants λi and λi,j can be chosen in an ad hoc way using the knowledge
of the market and of the method; for instance, a value in the interval (0.94; 0.97)
is generally recommended in the literature. Another approach is to select the
parameters based on some criteria. In this case, it is common to use a criterion
based on the one-step ahead prediction error. The basic idea of the exponential
smoothing method is that the variable of interest changes randomly. Thus, we
could use the present estimate of the volatility, i.e. ĥi,t, as the one step-ahead
prediction of the volatility. The conditional volatility ht+1 is unobservable and
a proxy for the one step-ahead prediction error is given by r2

i,t+1 − ĥi,t. Thus,
for the i-th series we select λi, which minimizes the weighted squared prediction
error given by

WMSEi =
T∑

t=t0

w(t)(r2
i,t − ĥi,t−1)2,

where w(t) can be used in order to give more importance to most recent obser-
vations.

Engle (2002) suggested the use of the same value of λ for all series, using
a weighted value, but here we will select different values for each variance and
covariance.

The correlation between the i-th and j-th series at time t is estimated by:

ρ̂ij,t =
ĥij,t√
ĥi,tĥj,t

.

The S+FinMetrics function presents an alternative way to choose the smooth-
ing parameter (see Zivot and Wang 2002, Section 13.2). Denote the return vector
by rt and its conditional (to the past information) covariance matrix by Σt. Then,
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the quasi-log likelihood, considering the multivariate normal distribution and the
mean of the returns equal to zero, can be written as:

logL = −NT

2
log(2π) − 1

2

T∑
i=1

|Σt| −
1
2

T∑
i=1

r′tΣ
−1
t rt.

The S+FinMetrics uses the same smoothing parameter to estimate the variances
and covariances, denoting it by λ. The coefficient λ is treated as a parameter and
it is estimated as the value that maximizes the log likelihood when the covariance
Σt is recursively calculated using (2.2) and (2.4) in the ewma1 program option.
In another program option, ewma2, (2.2) is substituted by the alternative formula
(2.3) and the covariance is estimated by (2.4) modified in a similar way.

2.2 Multivariate GARCH models

We tested different versions of multivariate GARCH models, the Bollerslev
(1990) Constant Conditional Correlation (CCC) Model, The Baba, Engle, Kraft
and Kroner BEKK (Engle and Kroner, 1995) model and the Engle (2002) Dy-
namic Conditional Correlation Model (DCC). In this section, we briefly present
some results for these models. Specifically, definitions, estimation, and lack of a
specification test.

Constant conditional correlation (CCC) model

In this model, proposed by Bollerslev (1990), the conditional variances are
assumed to follow univariate GARCH(p,q) models,

hit = ωi +
p∑

l=1

αilr
2
i,t−l +

q∑
s=1

βishi,t−s, i = 1, . . . , N (2.5)

but the conditional correlation between returns i and j, ρij , are considered time
invariant. Then, the conditional covariances are defined as

hij,t = ρijh
1/2
it h

1/2
jt i, j = 1, . . . , N,

with a total number of parameters in the model equal to N(1 + p + q) + (N −
1)N/2. The constraints

∑p
l=1 αil +

∑q
s=1 βis < 1 for i = 1, . . . , N are sufficient to

guarantee second-order stationarity.

Baba, Engle, Kraft and Kroner (BEKK) model

This model was initially proposed by Yoshi Baba, Robert Engle, Dennis Kraft
and Ken Kroner, hence the acronym BEKK, but the published updated version
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of this article includes only two of the original authors (Engle and Kroner, 1995).
The objective was to define a model capable of reproducing the time-varying
correlations observed in empirical studies.

In the Full BEKK (p, q) model the conditional variance matrix is defined as:

Ht = Ω +
p∑

l=1

Alrt−lr
>
t−lA

>
l +

q∑
s=1

BsHt−1B
>
s , (2.6)

where Ω, Al, Bs are N ×N matrices of parameters with Ω symmetric and positive
definite. Since the terms involving matrices A′s and B′s on the right hand side of
(2.6) are quadratic forms, Ht is guaranteed to be positively defined. Therefore,
we do not need additional conditions on the parameters. As usual, conditional
correlations are defined as ρij,t = hij,t/

√
hi,thj,t for i, j = 1, . . . , N .

For Full BEKK models the number of parameters is (p+ q)N2 +N(N +1)/2.
It is possible to obtain simpler versions by considering A′s and B′s as diagonal
matrices, the Diagonal BEKK models, or scalars, the Scalar BEKK models. The
number of parameters is reduced to (p+q)N+N(N+1)/2 and (p+q)+N(N+1)/2
for diagonal and scalar cases, respectively.

Dynamic conditional correlation (DCC) model

This model was proposed by Engle (2002) and preserves the parsimony of
individual univariate GARCH models volatility for each time series with a simple
time-varying correlation.

The model presents an improvement compared with BEKK models because
the order of the number of parameters decreases to k and the order of the number
of parameters that needs to be estimated simultaneously decreases to one (Engle
and Sheppard, 2001).

In DCC models, the conditional covariance matrix is defined as

Ht ≡ DtRtDt,

where Dt and Rt are N × N matrices. Rt is the time-varying correlation matrix
with elements ρij,t, and Dt is a diagonal matrix with elements given by the
conditional standard deviations h

1/2
i,t .

Conditional variances, hit, are modelled as (2.5) and conditional correlations
are calculated by

ρij,t =
δij,t√
δii,tδjj,t

i, j = 1, . . . , N,

where δij,t are elements of matrix ∆t. This evolves by following

∆t = S(1 − α − β) + αD−1
t rtr

>
t D−1

t + β∆t−1, (2.7)
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where S is the unconditional correlation matrix of εt = D−1
t rt.

Once the conditional variances have been determined, note that we just need
two parameters, α and β, in order to calculate the conditional correlations. Thus,
the total number of parameters is equal to N(1 + p + q) + 2, i.e, of order N . In
addition, as shown by Engle and Sheppard (2001), the conditional variance is
positively defined.

The necessary and sufficient condition for second-order stationarity in (2.7) is
α+β < 1. However, when α+β = 1 , we obtain a strictly stationary model. This
version is named Integrated Dynamic Conditional Correlation (IDCC) model.

Estimation

Assume now that rt has a conditional multivariate Gaussian distribution, i.e.
rt|Ft−1 ∼ N(0,Ht). Then the log likelihood can be written as:

L ' −1
2

T∑
t=2

(N log(2π) + log |Ht| + r>t H−1
t rt). (2.8)

In expression (2.8), the first term in the sum is assumed to be zero. With
hundreds or thousands of observations, the effect of this term is almost null.

In order to estimate the parameters, maximization of the likelihood is done
by using numerical routines, for example, Davidon-Fletcher-Powell (Fletcher and
Powell, 1963) or BHHH (Berndt et al., 1974) algorithms.

It is worth saying that expression (2.8) holds for all specifications of the
multivariate Gaussian model above. But, for DCC models, we can obtain

L = −1
2

T∑
t=1

(N log(2π) + 2 log |Dt| + log |Rt| + r>t D−1
t R−1

t D−1
t rt).

For DCC models, sufficient conditions for the consistency and asymptotic nor-
mality of this estimator are based on Newey and McFadden (1994) results. Unfor-
tunately, the properties of the maximum likelihood estimators of BEKK models
are still not completely known (Engle and Kroner, 1995).

It is possible to deal with other conditional distributions rather than the
multivariate Gaussian distribution. In this case, we still maximize (2.8) and
obtain quasi-maximum likelihood estimates.

Specification testing

The robust test of conditional moment test presented by Wooldridge (1990),
which assesses whether the fitted model adequately explains the data dynamics,
is briefly described in this subsection. The test is useful to detect whether there
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are other variables which are relevant in explaining the residuals (Cappielo et al.,
2003, Mar 蓷 l and Valls Pereira, 2005). In order to apply the test, one should
initially define a generalized residual uij,t, which is defined as any function of
the residuals with an expectation equal to zero. We are going to use ui,t =
ε2
i,t/hi,t − 1 as the generalized residual. We also have to select sets of variables,

also called moments,which are expected to explain the residuals. The choice
of this set of variables depends on the specific lack of specification we want to
test. In subsection 4.2.1 we have examples of three set of variables (equations
(4.1) to (4.3)). We follow the procedure proposed by Mar 蓷 l and Valls Pereira
(2005). Denote the g-th set of Q moments by λg,t−1 = {λg,1,t−1, · · · , λg,Q,t−1}.The
specification test for an i-th series is given by the following steps:

1. Using a consistent estimate of the model parameters, evaluate the generalized
residuals, ut = (u1,t, · · · , uN,t)>; the gradient in relation to the parameter
θj given by yijt = E(∂ui,t/∂θj); and the set of moments λg,t−1.

2. Regress the conditional moments λg,k,t−1, k = 1, · · · , Q, the response variable,
on the gradients {yijt, i = 1, · · · , N, : j = i1, · · · , iM ′}, for k = 1, · · · , Q, the
predictors. Calculate this regression residuals, say ξk,t−1. The set of values
{j = i1, · · · , iM ′} selects the cases where the gradients are not zero.

3. The next step consists of a new regression, taking a vector of ones as the
response variable and {uitξ1,t−1, · · · , uitξQ,t−1} as regressors, product of the
generalized residuals defined in step (1) with the residuals ξk,t−1 evaluated
in the regression from the previous step. There is lack of specification when
the regressors are relevant.

4. We can use Ru = T − SSR, where T is the number of observations, and
SSR is the sum of squared residuals of this second regression, as the test
statistic. Under very mild conditions and under the null hypothesis of no
lack of specification, this statistic is asymptotically distributed as a chi-
square with Q degrees of freedom (Cappielo et al., 2003).

The conditional moments can be any function of any variable allowing us to
use this procedure to test against any form or cause of bad specification.

2.3 Factorial analysis

When modeling several financial time series, some of them will usually be
affected by common effects. For this reason, it is reasonable to model the multi-
variate conditional covariance matrix of these series using factor models.

Considering that stochastic volatility models can be easily generalized to mul-
tivariate distributions (Harvey et al., 1994), it is quite natural to use them to
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model the factors. This model was initially presented by Aguilar and West (2000)
and Chib et al. (2001) and applied by other authors to analyze the returns of
some emerging markets (see, for instance, Lopes and Migon, 2002 and Tsai and
Hotta, 2005).

The factor model

Considering the N−variate returns series rt, the factor model is given by:

rt = θt + Xtft + εt, (2.9)

with t = 1, . . . , T ; θt, an N × 1 mean vector; Xt, the N × k, k < N , the loading
matrix; ft, the k × 1 common factors; and εt, an N × 1 specific disturbance
vector. In the literature θ and X are generally taken as time invariant. We
used time-varying mean and loading matrix for modeling because they produced
a smoother estimate of the covariance matrix. The processes {ft} and {εs} are
independent. Conditioned on their diagonal variance matrix Ht, the factors ft

can be considered serially independent realizations of a latent process, i.e.

ft|Ht ∼ Nk(0;Ht). (2.10)

Similarly, the specific factors, conditioned on their diagonal variance matrix
Ψt, can also be considered serially independent realizations of a latent process,
i.e.

εt|Ψt ∼ NN (0; Ψt). (2.11)

Thus, conditioned on θt, Xt, Ht and Ψt the covariance matrix of the returns
is given by:

Σt = XtHtX
>
t + Ψt, (2.12)

and we have rt|(θt, Xt,Ht, Ψt) ∼ NN (θt; Σt). Therefore, by conditioning the
returns series on common factors we also have a serially independent Gaussian
process rt|(θt, Xt, ft, Ψt) ∼ NN (θt + Xtft; Σt). This leads to the conclusion that
common factors explain all the dependence structure among the series. The
models for ft and εt will be presented in the next subsection.

The model given by (2.9) is not identified. So, in order to have a single
decomposition in (2.12), some restrictions are imposed on matrix Xt. This matrix
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must have full rank, be invariant under invertible linear transformation of the
factors and must have k, the number of column, such that the system given by
equation (2.12) is not undetermined (Aguilar and West, 2000).

We use the hierarchical form for the loading matrix Xt, as proposed by Geweke
and Zhou (1996), i.e with restrictions xij,t = 0 for i < j and xii,t = 1, in order to
get the necessary restrictions of full rank and invariance. Thus:

Xt =



1 0 . . . 0
x21,t 1 . . . 0

...
...

...
...

xk1,t xk2,t . . . 1
xk+11,t xk+12,t . . . xk+1k,t

...
...

...
...

xN1,t xN2,t . . . xNk,t


.

This means that the first return series, r1 is modeled by the mean θ1 plus
the factor f1 and the specific disturbance ε1; the second, r2, is modeled by θ2 +
x21f1 + f2 + ε2 and so on and so forth. Aguilar and West (2000) claim that,
when using the hierarchical form for matrix X, the order of the series in the
vector rt is important to the interpretation of the estimated values of X, to
adjustment of the model, and also to the determination of the factor number k,
but does not interfere in model forecasting because the variance and covariance
are independent of the choice of the order.

Another restriction on k, which gives the model size, is that the number of
equations N(N +1)/2 must be greater than Nk +N −k(k− 1)/2, the number of
parameters in equation (2.12). We also should take into account that a smaller
k means a more parsimonious model.

Stochastic volatility components

The variances of common factor ft and the specific effects εt, which are the di-
agonal elements of matrix Ht in (2.10) and Ψt in (2.11), are respectively modeled
by stationary first-order stochastic volatility models.

Denoting the log volatility of common factors ft as λf
i,t = log hi,t, for i =

1, . . . , k, and λf
t = (λf

1,t, . . . , λ
f
k,t)

> we have

λf
t = µf + Φf (λf

t−1 − µf ) + ηf
t ,

where ηf
t ∼ Nk(0; Σf

η) with t = 1, 2, . . . are independent. Denote the mean of
λf

t by µf = (µf
1 , . . . , µf

k)>, the persistence by Φf = diag (φf
1 , . . . , φf

k) and the
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innovation variance matrix by Σf
η . The matrix Σf

η is full, i.e. it can have all
the elements different from zero in order to allow for correlations among the
k process innovations at time t. Notice that λf

t |(λ
f
t−1, µ

f , φf , Σf
η) ∼ N [µf +

Φf (λf
t−1 − µf ); Σf

η ].
For the specific disturbances we have λε

i,t = log ψi,t and λε
t = (λε

1,t, . . . , λ
ε
N,t)

>.
The log volatility process is given by:

λε
t = µε + φε(λε

t−1 − µε) + ηε
t ,

where ηε
t ∼ NN (0; Σε

η) are independent. Denote the mean of λε
t by µε = (µε

1, . . . ,

µε
N )>, the persistence by Φε = diag (φε

1, . . . , φ
ε
N ) and the innovation variance

matrix by Σε
η, which is taken as diagonal, i.e Σε

η = diag (σ2
η,j). This is the same as

considering an N univariate process with conditional distribution λε
t |(λε

t−1, µ
ε, φε,

Σε
η) ∼ N [µε + φε(λε

t−1 − µε); Σε
η].

Priors

The prior distribution of the vector of parameter {θ,X, Φf ,Σf
η , µf , Φε, Σε

η, µ
ε}

is given by the product of independent priors:

p(θ)p(X)p(Φf )p(Σf
η)p(µf )p(Φε)p(Σε

η)p(µε),

where p(ω) denotes the probability density function of random variable Ω at point
ω. Table 1 shows the priors of θ, X, µf and µε. They are centered on the values
obtained by factorial approximation applied to part of the initial observations as
proposed by Aguilar and West (2000). We use Beta distribution as priors for
φ‡ = 2×φ−1, where φ represents each element in φf and φε. The priors of other
parameters are taken from the literature (Aguilar and West, 2000, Chib et al.,
2001 and Tsai and Hotta, 2005).

Table 1: Prioris for the MF-VE model, ẑ denotes the estimate of factorial
approximation to z.

Parameter Priori Mean Standard Deviation

θi N (θ̂i; 25) θ̂i 5
xij N (x̂i,j ; 25) x̂i,j 5
µf

j e µε
i N (µ̂; 25) µ̂ 5

φ‡ Beta(21; 1.5) 0.86 0.11
σε

η,i IGamma(2.4; 0.35) 0.25 0.40
Σf

η (2×2) IWishart(6; 0.10 × I) 0.20* 0.28*

∗ diagonal values of Σf
η
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We did not find contagion between Latin American countries during the Mex-
ican crisis. Calvo and Reinhart (1996) argued in favor of contagion among the
large Latin American countries because they detected an increase of comove-
ments across weekly equity and Brady bond returns for emerging markets in
Latin American after the Mexican crisis. However, Forbes and Rigobon (2002)
found that the evidence of contagion from Mexico to the Latin America countries
measured by the increase of the correlation disappeared when corrected for bias.

More details about the application of MCMC simulation can be found in the
literature (Aguilar and West, 2000, Chib et al., 2001, Lopes and Migon, 2002 and
Tsai and Hotta, 2005).
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Figure 1: Daily returns of all indices. The vertical lines indicate the beginning
of crisis periods: a the Asian crisis in second semester of 1997; b the Russian
crisis in August of 1998, c the Brazilian crisis in 1999; d the Nasdaq fall in April
of 2000; e terrorist attacks on September 11th, 2001; and f the Argentinian
crisis at the end of 2001.

3. The Data and Filtering

The data set is composed of five stock exchange indices, namely, Ibovespa
from Brazil, Merval from Argentina, IPC from Mexico, KLSE from Malaysia and
RTSI from Russia, with daily data corresponding to the period from 09/05/1995
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to 12/30/2004. We only considered the dates on which all the markets were
open. This corresponded to 1,980 observations with a loss of approximately 14%
of the original data. The data were obtained from the Yahoo! Finance website,
http://finance.yahoo.com/, accessed on 02/05/2005.

We will adopt the compounded returns defined as rt = ln (Pt/Pt−1), where Pt

is the stock market index value. Henceforth, these series will be simply referred
to as returns.

The returns series are shown in figure 1. In the figure, the beginning of the
main crises is indicated by vertical lines: a the Asian crisis in mid-October 1997,
b the Russian crisis in August 1998, c the Brazilian crisis in 1999, d the Nasdaq
fall in April 2000, e the terrorist attacks on September 11th, 2001, and f the
Argentinian crisis at the end of 2001.

Table 2 presents some summary statistics for all series. The Russian index is
the one with the greatest variance, followed by Latin American and Malaysian
indices. The largest value of all the indices was achieved by Ibovespa and the
smallest one by RTSI. The Ibovespa peak occurred in January 1999 and the min-
imum value in September 1998. The greatest value for the Merval series occurred
in December 2001 and the smallest value in February 2002. For the KLSE, we
had the maximum value in February 1998 and the minimum in September 2001,
while for the IPC, the maximum value occurred in September 1998, the same
period when the lowest value of Ibovespa occurred, and the minimum in October
1997. Finally, RTSI presented peaks and minimum in October 1997, coinciding
with the lowest IPC value. Furthermore, these two extreme points of the RTSI
index occurred on two consecutive days, October 28, 1997, respectively for the
minimum and for the maximum values.

Table 2: Summary statistics of the returns before filtering

Ibovespa Merval IPC KLSE RTSI
mean (10−4) 8.87 5.64 8.67 -0.47 9.11
maximum 0.288 0.238 0.122 0.208 0.227
minimum -0.172 -0.198 -0.143 -0.133 -0.209
variance (10−4) 6.57 6.77 3.29 3.16 11.63
kurtosis 15.9 11.5 8.90 21.5 8.75
asymmetry 0.35 0.037 -0.085 0.86 -0.18

The results in table 2 indicate that Merval and IPC returns distributions are
more symmetric than the others, and that all distributions have heavier tails than
the normal distribution.

During the Brazilian crisis, the volatility of Ibovespa, Merval and IPC indices
were higher than the volatility of the other series. The volatility was lower before
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the Asian crisis and after the Argentinian crisis, except for Brazilian and Rus-
sian market returns. The volatility of Russian returns was already high at the
beginning of the data set. We will refer to the period between the first (Asian)
and last (Argentinian) crises as the between-crises period. The largest volatility
was observed for Ibovespa, RTSI and Merval series. In general, the volatilities
were larger in the between-crises period and smaller after the Argentinian crisis,
except for the Merval index, which showed an increase in volatility. The RTSI
volatility was already large before the Asian crisis, but increased thereafter. The
KLSE volatility started to increase before the benchmark period showing that it
started to be affected by the crisis in the other Asian countries.

3.1 Filtering

Although not shown, the serial correlation of all the returns are very small;
except for Merval and IBOVESPA, all of them present statistically significant
first-order correlation at 5% level. Since the first-order correlation is statistically
significant at 10% level even for these two series, we use an autoregressive filter of
order one to all return series. The serial correlation of squared returns are small,
but are statistically significant and persist for higher lags.

Comparing with the autocorrelation functions in the return series and in the
squared return series before and after filtering, we noticed a large reduction in
return autocorrelation, mainly in the first lag, as expected. The first autocorre-
lation is not signicant at 10% level for any series. Also, as expected, the mean
can now be considered equal to zero (smaller than 10−9). The kurtosis decreased,
but is still large, with maximum excess equal to 18.31 for the KLSE index and
minimum excess equal to 6.10 for the RTSI index. The maximum and minimum
values and the asymmetry coefficient remained almost the same. All the empirical
analyses will be applied to these filtered data.

4. Estimation

In this section, we present the selection of the exponential smoothing param-
eters, the estimates of the multivariate GARCH and factorial models and the
estimation of the correlation between the series. The analyses of the contagion
estimates are presented in the next section.

4.1 Exponential smoothing

The correlation between each pair of series was estimated using the mgarch
command and the ewma1 option ( further details in subsection 2.1) in S+FinMetrics.
This means that the smoothing parameter is selected for each pair of series.
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The selected smoothing parameters are presented in table 3. All the smoothing
parameters are in the recommended interval of (0.94, 0.97), which is an indica-
tion that the method could be applied. The smallest value was 0.9446 for the
Ibovespa-Merval pair, and 0.9679 for the Ibovespa-KLSE pair. Since the range
of variation is not large, we would have very similar results if we had selected the
same smoothing coefficient to estimate all the covariance matrices. The estima-
tion of the correlation between the series is given in figure 2. The analysis of the
correlations is done later, together with the other methodologies.

Table 3: Estimates of λ for each pair of indices

Merval IPC KLSE RTSI
Ibovespa 0.9446 0.9549 0.9679 0.9507
Merval 0.9618 0.9634 0.9557
IPC 0.9667 0.9587
KLSE 0.9645
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Figure 2: Correlations Estimates between each pair of indices given by expo-
nential smoothing method. The vertical lines indicate the beginning of crisis
periods: a the Asian crisis in second semester of 1997; b the Russian crisis in
August of 1998, c the Brazilian crisis in 1999; d the Nasdaq fall in April of
2000; e terrorist attacks on September 11th, 2001; and f the Argentinian crisis
at the end of 2001.
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4.2 GARCH analysis

Estimation and specification testing

All GARCH multivariate models were fitted using the Sheppard and Engle
computational routines in Matlab. These routines are public and are available
from the Sheppard website: http://www.kevinsheppard.com/research/uscd garch.htm.
We only present the results for BEKK and DCC models with orders (1,1) and
(2,2) is for models with Gaussian disturbances. Student-t disturbances were also
used, but the results are not reported because the results are worst than with
Gaussian disturbances. Table 4 presents the values of the Bayesian Information
Criteria (BIC) and the Akaike Information Criteria (AIC) for different models.
We also estimated DCC models up to orders 4, and BEKK models with p = q = 3
and 4, but the results were poorer compared to models with (2,2) order. We only
fitted BEKK models with the same order because we had problems of convergence
with the Sheppard program when p 6= q.

Table 4: GARCH models with Gaussian disturbances

Model ln L(θ)/T number of param. AIC BIC
CCC (1,1) 12.787 25 -50562 -50422
CCC (2,2) 12.817 35 -50661 -50465
DCC (1,1) 12.816 17 -50692 -50597
DCC (2,2) 12.849 27 -50801 -50650
IDCC (1,1) 12.818 16 -50703 -50613
IDCC (2,2) 12.826 26 -50714 -50569
full BEKK (1,1) 12.800 65 -50531 -50167
full BEKK (2,2) 12.904 115 -50843 -50200
diag.* BEKK (1,1) 12.744 25 -50391 -50251
diag. BEKK (2,2) 12.832 35 -50718 -50522
sca.* BEKK (1,1) 12.714 17 -50287 -50192
sca. BEKK (2,2) 12.716 19 -50292 -50186

According to the results presented in table 4, the BIC selected the DCC (2,2)
model while AIC selected the full BEKK (2,2) model. The AIC selected DCC
(2,2) as the second best model. Out of the 27 parameters estimated for the
DCC model, only four were not significant at 5% level, indicating that, besides
providing a good adjustment, it is also parsimonious. On the other hand, in
the BEKK model, 89 out of 115 parameters were not significant. Since the
AIC criterion has the tendency to select models with an unnecessary number
of parameters, it seems that the DCC (2,2) model is the best one, but we will
analyze both models.
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Table 5: Summary statistics of DCC (2,2) (first line) and full BEKK (2,2)
(second line) models residuals

Ibovespa Merval IPC KLSE RTSI
kurtosis 1.72 2.59 2.25 11.5 3.43

1.96 2.49 1.61 7.18 2.60
asymmetry -0.050 -0.0066 -0.054 -0.76 -0.10

-0.041 0.019 -0.035 -0.34 -0.021

Table 5 presents some descriptive statistics of the standardized residuals of
DCC (2,2) while table 6 presents the results of the Ljung-Box test. The null
hypothesis of absence of correlation in the squared residual series is rejected at
5% level only for the IPC index series. For all other cases the model appears to
be effective in the elimination of serial correlation.

Table 6: Ljung-Box test for the DCC (2,2) (first line) and full BEKK (2,2)
(second line) residuals and the squared model residuals

residuals squared residuals
statistic p-value statistic p-value

Ibovespa 18.66 0.54 11.36 0.94
19.17 0.51 42.30 0.003

Merval 18.37 0.56 16.20 0.70
18.22 0.57 16.29 0.70

IPC 10.81 0.95 38.29 0.09
12.45 0.90 24.23 0.23

KLSE 24.62 0.22 5.37 1.00
21.85 0.35 14.84 0.79

RTSI 19.09 0.52 11.00 0.95
19.04 0.52 9.46 0.98

The specification tests were performed according to the presented methodol-
ogy. With the first test, we checked whether there were any residual heteroskedas-
ticity, and we used the other two tests to check for two types of asymmetry. The
sets of variables used were:

λ1,t−1 = {ε2
1,t−max(p,q)−1, . . . , ε

2
5,t−max(p,q)−1} (4.1)

λ2,t−1 = {I(ε1,t−1>0), . . . , I(ε5,t−1>0)} (4.2)

λ3,t−1 = {ε2
1,t−1I(ε1,t−1>0), . . . , ε

2
5,t−1I(ε5,t−1>0)}. (4.3)

Table 7 presents the results of lack of specification tests for DCC (2,2) and
for the full BEKK (2,2) models. None of the tests applied to all series were
statistically significant at 5% level when applied to the residuals of the BEKK
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Table 7: Tests of specification

DCC (2,2) full BEKK (2,2)

Indices Moments Statistics p-value d.f. Statistics p-value d.f.
Ibovespa λ1 2.98 0.70 5 2.97 0.70 5
Merval 14.0 0.016* 5 6.16 0.29 5
IPC 6.36 0.27 5 5.43 0.37 5
KLSE 1.07 0.96 5 6.10 0.30 5
RTSI 1.73 0.88 5 0.98 0.96 5
Ibovespa λ2 13.5 0.019* 5 10.7 0.058 5
Merval 10.8 0.056 5 7.31 0.20 5
IPC 9.01 0.11 5 4.02 0.55 5
KLSE 7.85 0.16 5 7.39 0.19 5
RTSI 9.02 0.11 5 7.78 0.17 5
Ibovespa λ3 9.99 0.076 5 5.67 0.34 5
Merval 7.67 0.18 5 2.26 0.81 5
IPC 3.93 0.56 5 4.62 0.46 5
KLSE 8.23 0.14 5 7.59 0.18 5
RTSI 1.92 0.86 5 1.46 0.92 5

** statistically significant at 1% level; * significant at 5% level.

model, showing no lack of specification. The 15 tests applied to the DCC residuals
were significant at 5% level only for the heteroskedasticity test (λ1) for the Merval
index and effect of symmetry (λ2) for the Ibovespa index. Thus, we could consider
that the model provided a good fit to the data.

Since the correlations estimated by both models are very similar and the
estimates of the DCC model are smoother, we are going to present the DCC
correlation results. The estimates are presented in figure 3.

4.3 Factorial analysis

It is possible to use a maximum of two factor numbers because of the re-
striction given by N(N + 1)/2 > Nk + N − k(k − 1)/2. Ibovespa was the first
selected factor because we have three Latin American countries and Brazil is the
most important economy in the region. We considered a second factor, but the
Markov simulation chain did not converge for all the entertained models. This
is an indication that a second factor is not necessary. This result is expected
in a certain way because we do not expect to find a close relationship between
the Russian and Malaysian markets, except possibly during economic crises. The
factorial model was estimated using a program written in Ox.
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Figure 3: Correlations estimates to each pair of indices given by GARCH mod-
elling DCC (2,2) Gaussian. The vertical lines indicate the beginning of crisis
periods: a the Asian crisis in second semester of 1997; b the Russian crisis in
August of 1998, c the Brazilian crisis in 1999; d the Nasdaq fall in April of
2000; e terrorist attacks on September 11th, 2001; and f the Argentinian crisis
at the end of 2001.
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Figure 4: Correlation estimates to each pair of indices given by the factorial
analysis with one factor. The vertical lines indicate the beginning of crisis
periods: a the Asian crisis in second semester of 1997; b the Russian crisis in
August of 1998, c the Brazilian crisis in 1999; d the Nasdaq fall in April of
2000; e terrorist attacks on September 11th, 2001; and f the Argentinian crisis
at the end of 2001.

Table 8: Mean and standard deviation of the posterior distribution of the time
invariant parameters of the factorial model

Factor Ibovespa Merval IPC KLSE RTSI
mean: µf -8.783 -8.563 -8.581 -9.033 -9.221 -7.493
standard deviation: µε 0.219 0.134 0.191 0.198 0.286 0.153
mean: φf 0.958 0.943 0.946 0.956 0.988 0.942
standard deviation: φε 0.013 0.022 0.018 0.011 0.005 0.011
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The estimation of the mean and standard deviation of the posterior distribu-
tion of the time-invariant parameters of the models are presented in table 8. The
smallest mean of the posterior distribution of the persistence φ was 0.946 (Mer-
val) whereas the largest one was 0.988 (KLSE) (the persistence is defined by φ).
The estimation of the time-varying loading matrix and the common and specific
log variances are not presented. The covariances and correlation matrices can be
estimated by equation (2.12) and the estimation of the correlation presented in
figure 4.
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Figure 5: Correlation cumulative sum graph for each pair of indices. The
vertical lines indicate the beginning of crisis periods: a the Asian crisis in second
semester of 1997; b the Russian crisis in August of 1998, c the Brazilian crisis
in 1999; d the Nasdaq fall in April of 2000; e terrorist attacks on September
11th, 2001; and f the Argentinian crisis at the end of 2001.

5. Comparison of Results

In this paper, we have shown three different methods to estimate the con-
ditional correlation between the stock market return indices of five Emerging
Markets: Brazil, Argentina, Mexico, Malaysia, and Russia. The estimated corre-
lations were presented in the previous section. One way to assess the increase in
correlation during crisis periods is through correlation cumulative sum graph. An
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increase in the slope in a period will indicate an increase in the correlation in this
period. These graphs are shown in figure 5. The results of the three estimation
methods are very similar, except for the estimation of the correlation between
KLSE and RTSI by the factorial method. In many cases, there was an increase
in correlation after the Asian crisis. In two cases, there was a strong decrease in
correlation after the Nasdaq fall (between the Malaysian index and the Brazilian
and Argentinian indices). We also have a slight decrease in correlation between
some markets after the Argentinian crisis.

Table 9 summarizes the results and presents the periods (a, Asian; b, Rus-
sian; c, Brazilian; d, Nasdaq; e, September 11th; and f, Argentina) and methods
which identified the contagion (E, Exponential; G, Multivariate GARCH; and F,
Factorial). We only considered indication of contagion when the correlation in-
creased. Since there is no clear indication about the beginning of the Asian crisis,
we consider that there is indication of contagion even when there was an increase
in correlation before the Hong Kong market crash. In some cases, the increase
in correlation does not occur immediately after the crisis, but there is a delay.
In this case, we indicated it as a delayed contagion. We also indicated the cases
where the increase in correlation is small. The results were often coherent between
the three procedures, but sometimes they were not. Nevertheless, there is some
agreement among all methods: in most cases, the contagion was detected only
during the Asian crisis, indicating that this was the most significant crisis in our
sample period. All the three methods detected contagion during the Asian crisis
in the following pairs: Brazil and Argentina, Brazil and Mexico, Argentina and
Mexico, and Argentina and Russia. During this period, the exponential method
detected contagion between Argentina and Malaysia and between Mexico and
Malaysia, both with delay, while the factorial method additionally detected a
slight contagion between Brazil and Russia, and the GARCH method detected
a delayed contagion between Argentina and Malaysia. Surprisingly, however, we
did not detect any direct contagion between Malaysia and any of the other four
countries through any of the methods. However, Forbes and Rigobon (2002) also
did not find evidence of contagion from the Hong Kong stock market index and
the same four countries. The exponential and GARCH methods detected conta-
gion during the September 11th terrorist attack in the following pairs: Brazil and
Malaysia, Brazil and Russia, Argentina and Malaysia, Mexico and Malaysia, and
Malaysia and Russia. Additionally, during this period, the exponential method
detected contagion between Argentina and Russia and the factorial method found
contagion between Brazil and Russia. The Nasdaq fall was the only other crisis
during which a slight contagion was detected, in this case, between Brazil and
Malaysia, using the exponential method.
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Table 9: Summary of the contagion detected by the three methods presenting
the crises (a, Asian; b, Russian; c, Brazilian; d, Nasdaq; e, September 11th;
and f, Argentina) and methods which identified the contagion (E, Exponential;
G, Multivariate GARCH; and F, Factorial)

Markets Merval IPC KLSE RTSI
Ibovespa a(E,G,F) a(E,G,F) d(E1) a(F)

e(E,G) e(E,G1,F1)
Merval · · · a(E,G,F) a(E2,G2) a(E1,G1,F1)

e(E)
IPC · · · · · · a(E2) a(F1)

e(E,G)
KLSE · · · · · · · · · a(E)

e(E,G)

1 slight contagion, 2 delayed contagion

None of the methods detected contagion between Brazil and Argentina dur-
ing the Brazilian and Argentinian crises. This could be surprising because of the
close relationship between these countries, but the markets were probably already
expecting the Brazilian and Argentinian crises and could have taken hedging pre-
caution. In general, we could say that the three methods produced similar results,
although without complete agreement. There was more agreement between the
exponential and GARCH methods.

Compared with similar analyses found in the literature, we have an agree-
ment in most of the cases. Lopes and Migon (2002) used the factorial model to
investigate the contagion between three Latin American countries, but included
Chilean IPSA and the U.S. Dow Jones indices and did not consider the Russian
and Malaysian markets. The analyzed period was a little different because they
included the 1994 Mexican Tequila effect, but did not include the Argentinian
crisis. Marçal and Valls Pereira (2005), on the other hand, used the multivariate
GARCH models to study the contagion between three Latin American countries
and Russia, but they worked with the sovereign debt bonds from January 1994
to December 2002. In these works, the authors also used the concept of shift-
contagion, but they considered that there was evidence of contagion whenever
there was a shift in correlation, while we considered that there was evidence of
contagion only when there was an increase in correlation. They also analyzed
the contagion across countries even when the crisis had not originated in any of
them. Lopes and Migon (2002) commented that there was evidence of conta-
gion in Latin American countries during the Asian, Russian and Brazilian crises
without pointing exactly when and where. However, by analyzing the results,
one finds that correlation decreased during the Brazilian crisis whenever there
was a shift in correlation. So, there is no contagion according to our definition,
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but there is indication of contagion in Brazilian, Argentinian and Mexican mar-
kets during the Asian crisis. Marcal and Valls Pereira (2005) reported evidence
of contagion during the Asian and Russian crises, but not during the Brazilian
and Argentinian crises. However, during the Russian crisis, there was in fact a
decrease in correlation.

Thus, in general there is more agreement between our results and the results
found in the literature, although the models were fitted to different series and
different periods.
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