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Abstract: Considering the importance of science and mathematics achieve-
ments of young students, one of the most well known observed phenomenon
is that the performance of U.S. students in mathematics and sciences is
undesirable. In order to deal with the problem of declining mathematics
and science scores of American high school students, many strategies have
been implemented for several decades. In this paper, we give an in-depth
longitudinal study of American youth using a double-kernel approach of non-
parametric quantile regression. Two of the advantages of this approach are:
(1) it guarantees that a Nadaraya-Watson estimator of the conditional func-
tion is a distribution function while, in some cases, this kind of estimator
being neither monotone nor taking values only between 0 and 1; (2) it guar-
antees that quantile curves which are based on Nadaraya-Watson estimator
not absurdly cross each other. Previous work has focused only on mean re-
gression and parametric quantile regression. We obtained many interesting
results in this study.

Key words: Double-kernel approach, nonparametric quantile regression,
plug-in rule, science and mathematics achievements.

1. Introduction

Recently more and more attention has been paid to the importance of science
and mathematics achievements of young students as the pace of change in our
lives is becoming faster and faster. We need broad mathematics- and science-
related knowledge and abilities for our everyday decision-making. Furthermore,
intrinsic value of mathematical and scientific knowledge shape and define our
common life, history, and culture. Mathematics and sciences are primary sources
of lifelong learning and the progress of our civilization.

“We as a nation must take immediate action to improve the quality of math-
ematics and science teaching in every classroom in this country,” John Glenn,
Former U.S. Senator and NASA astronaut, said when he presented his report.
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“If we delay, we put at risk our continued economic growth and future scientific
discovery...”.

However, students’ mathematics and science test scores have been going down
in the United States for the past decades, and the dismal performance of U.S. stu-
dents in mathematics and science have been stressed. American students in fourth
grade are among the leaders on mathematics assessments worldwide, but by the
time students graduate from high school, they are nearly last among 41 nations,
according to the Third International Mathematics and Science Study (TIMSS).
According to the U.S. National Assessment of Education Progress (NAEP), fewer
than one-third of all U.S. students in grades four, eight, and twelve performed
at or above proficient achievement levels. Nearly a third performed below basic
performance levels.

Among the earlier controversial studies in this area, Coleman (1966) studies
the effects of schooling inputs including class size on scholastic achievement and
concludes that schooling inputs have a negligible effect on scholastic achievement.
Hanushek (1986) provides a review of analyzing the effects of various inputs in
the effects of class size of public schooling finding that the effect of class size
reduction (and more generally increased expenditures on education) on achieve-
ment is ambiguous, wavering from positive to negative depending on the study. A
number of studies have examined the effect of school quality on student achieve-
ment. (For example, Ehrenberg and Brewer, 1994, 1995, and Hanushek, 1996).
The findings of these studies conclude that improving school resource can hardly
improve students’ performance on standardized achievement tests, which are in-
deed run counter to the conventional view point. Previous work has focused on
the average effects using classical least squared methods.

Recently, quantile regression (QR), as introduced by Koenker and Bassett
(1978), has been developed into a comprehensive approach to the statistical anal-
ysis of linear and non-linear response models and has been used in a broad range of
application settings. Using quantile regression, several recent studies have mod-
elled the performance of student on the standardized tests as a function of many
factors such as the parents’ socio-economic status, the number of parents and
siblings, class size, teacher qualifications, etc. For example, Edide and Showalter
(1998) uses quantile regression to estimate whether the relation between school
quality and performance on standardized tests differs at different points in the
conditional distribution of “tests score gains”. Levin (2001) addresses the con-
troversial topic of class size reduction, and controlling for a large number of
observable characteristics and potential endogeneity in the class size variable, an
educational production function, is estimated using a quantile regression tech-
nique while the main finding is that due to heterogeneity in the newly identified
peer effect, class size reduction is a potentially regressive policy measure. Tian
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(2006) investigates whether the family background factors alter performance on
mathematical achievements of the stronger students in the same way that weaker
students are affected by means of quantile regression approach. Tian’s findings
suggests that there may be differential family-background-factor effects at differ-
ent points in the conditional distribution of mathematical achievements.

In this paper, we give an in-depth Longitudinal study of American youth
using a double-kernel approach of nonparametric quantile regression (Yu and
Jones, 1998). Two of the advantages of the approach are: (1) to insure that a
Nadaraya-Watson estimator of the conditional function is a distribution function
while, in some cases, this kind of estimator is neither monotone nor taking values
only between 0 and 1; (2) to insure that quantile curves which are based on
Nadaraya-Watson estimator not absurdly cross each other. Previous work has
focused only on mean regression and parametric quantile regression.

This paper is organized as follows: Section 2 describes the data used for both
science and mathematics achievement regression. Section 3 introduces the double
kernel approach in the quantile regression. The resulting estimation and more
detailed discussion about science and mathematics achievement are presented in
Section 4 and 5 respectively. The relationship between science and mathematics
achievements is discussed in Section 6. The conclusion is presented in the last
section.

2. Data

The data, which represent science and mathematics achievement samples of
seventh-grade to twelfth-grade students from 1987 to 1992, are taken from Public
Opinion Laboratory, Northern Illinois University, DeKalb, Illinois. (Reference to
http://www. lsay.org). Beginning in the fall of 1987, the LSAY is a longitudinal
panel study of public middle and high school students. About 60 seventh graders
were randomly selected in each of the 52 schools and the total sample size was
3116 students. These students were followed for six years from grade 7 to grade
12, writing mathematics and science achievement tests and completing student
questionnaires annually. With a focus on mathematics and science education, the
information from students, parents, and teachers was also included in the study.

Outcome measurements are seven item scores: basic mathematics skills (BAS),
algebra (ALG), geometry (GEO), quantitative literacy (QLT), biology (BIO),
physics (PHY), and environmental sciences (ENV).

The BAS subscale measures the achievement in the basic mathematics skills
using the items on the mathematics achievement test calibrated to measure an
understanding of basic mathematics skills, and so on. The first four item scores
are the measures of the latent true score for mathematics achievement with mea-
surement errors respectively. The last three item scores are the measures of the
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corresponding latent true score for science achievement with measurement errors.
Item scores in each subject are imputed scores which include non-aberrant

observed scores when available. These items are stored as continuous variables
in the data file. These scores are comparable across grade levels within each
school subject. There are missing data because some children were absent during
testing. However, all available student achievement scores are used as dependent
measures.

3. Methodology

3.1 Double kernel approach

The characteristic of a longitudinal study is that individuals are measured
repeatedly through time. In the analysis of longitudinal data, we are usually
interested in the estimation of the underlying curve which produces the observed
measurements.

Recently, quantile regression methods have become increasingly popular in
many applications in longitudinal studies because of its useful features: (1) given
predictors, the models can show the character of the entire condition of a response
variable; (2) both the recent advances in computing resources and the ready
availability of linear programming algorithms make the estimation easy; (3) the
resulting estimated coefficients are robust; (4) quantile regression estimators may
be more efficient than those from least squared in the case that the error term is
non-normal.

Quantile regression can also be studied through several aspects, such as the
parametric, nonparametric and semi-parametric quantile regression model. It
is well known that the main concern with parametric modeling is the search
for a suitable parametric model with limited number parameters which gives a
reasonable fit to the data. This could be a very difficult task since there is often
little a priori knowledge of the underlying mechanisms that generate the data.
Fitting an incorrect regression model can be misleading. In order to overcome
this fundamental difficulties, an attractive alternative is nonparametric curve
estimation approach.

Condition distribution is a vital ingredient for quantile regression. Yu and
Jones(1998) and Hall et al.(1999) have recently considered several methods for
estimating conditional distribution. In this article, we employ the local linear
double-kernel smoothing method proposed by Yu and Jones (1998). Specifically,
suppose that {(X1, Y1), · · · , (Xn, Yn)} is a set of independent observations from
some underlying distribution F (x, y) with density f(x, y), and the concerned
centers of responses Yi’s are considered to be realizations from the condition
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F (y|x) or density f(y|x) of Y given X = x. Define F̂h1,h2(y|x) = â. where

(â, b̂) = argmin
∑

i

(
Ω

(
y − Yi

h2

)
− a − b(Xi − x)

)2

× K

(
x − Xi

h1

)
,

where h1 and h2 are the bandwidth in the x and y directions respectively. The
functions K and Ω are two kernel functions.

3.2 Bandwidth selection

The important issue with the kernel fitting approach is the bandwidth selec-
tion. There are several different ways to select the bandwidth in the x direction.
Here one rule for it simply modifies the bandwidth hmean that would be used for
mean regression and can be implemented as follows:

(1) Employing the Ruppert, Sheater and Wand (1995) technique to obtain
hmean. The technique is based on the asymptotic mean square error (AMSE)
together with the ‘plug-in’ rule to replace any unknown quantity in the AMSE
by its estimator.

(2) Calculate hp = hmean

[
p(1−p)

φ{Φ−1(p)}2

]
, where φ and Φ are the standard normal

density and distribution functions.
Similarly, from minimizing the AMSE of estimator over the bandwidth bp in

the y direction, the bp can be chosen according to

bph
3
p

b1/2h
3
1/2

=

√
2πφ

(
Φ−1(p)

)
2 {(1 − p)I(p ≥ 1/2) + pI(p < 1/2)}

,

where b1/2 taken to be h1/2 and I(·) is an ordinary indicator function. For further
details see Yu and Jones (1998).

4. Science Achievement

4.1 Descriptive statistics

Descriptive Statistics of Science Achievement are presented in Table 1. Notice
that the magnitude of average science scale score results increases monotonically
from grades 7 to 11, but decreases in Grade 12. It is also notable that the average
science score passed 60 score only in Grade 11, that is 61.44. Generally speaking,
the students perform badly in science during high school (from grade 7 to 12).

Table 1 clearly reveals the tendency of the average scores from Grade 7 to
Grade 12. The significant change in average score results between grades occurred
at grade 8, where there were almost 6 points increase in students’ average score.
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That is from 52.28 to 57.81. The difference between the maximum and minimum
values of all the six grades’ average score is 61.44-50.41=11.03.

Table 1: Descriptive statistics of science achievement

Grade Number Minimum Maximum Mean Std.

Grade 7 3077 26.62 89.99 50.41 10.22
Grade 8 2742 16.85 87.41 52.28 12.77
Grade 9 2440 24.80 96.62 57.81 12.50
Grade 10 2250 17.97 97.23 59.12 14.51
Grade 11 1838 18.09 99.84 61.44 15.60
Grade 12 1485 13.23 103.24 59.84 19.07
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Figure 1: The science achievements of American youth of seventh- and twelfth-
grade as a function of grades they were in. Five quantile curves with p = 0.05,
0.25, 0.5, 0.75, and 0.95.



Analysis of Mathematics and Science Achievements 455

4.2 Double-kernel regression quantile curve of science achievement

Recently, Quantile regression has been used as a standard analysis tool for
modelling the performance of students on standardized exams as a function of
socio-economic characteristic like their family background factors and policy vari-
ables like class size, school expenditure, and teacher qualifications. A simple rea-
son for this is that the effect of the covariate can be very different for high- and
low-level of covariates and that potentially different solutions at distinct quan-
tiles may be interpreted as differences in the response of the dependent variable
to changes in the regressors at various points in the conditional distribution of
the dependent variable. Here the interesting covariate is time, i.e., the Grade.

Figure 1 depicts five quantile curves with p = 0.05, 0.25, 0.5, 0.75 and 0.95.
Superimposed on the plot is a straight line with filled dots (marked by “#”)
representing the ordinary least squared estimate of the mean effect. From the
figure, we see somewhat different trends over grade in the five quantiles. Note
that there is nonlinearity and some heteroscedasticity in these data set. In fact,
quantile plots can give a quick impression of the location, spread and shape of
Y conditional on given X = x. Specifically, suppose that Y = m(X) + ε. If
the error term ε is with homoscedasticity, all regression quantile curves will be
parallel. In another word, the imparalleled regression quantile curves indicate
heteroscedasticity.

Furthermore, we can see that there is a much steeper increase in science
achievement at higher quantiles, such as 0.75 and 0.95 quantiles. In fact, very
little increases occurred at the intermediate part of the distribution, such as
median. However, there is a marked decrease in the science achievement across
all the lower part of the distribution, such as 0.05 quantiles. It is clear that
between 1987 and 1992 there was an increase in the number of students of seventh-
to twelfth-grade in the high science score as well as a decrease in the number
of students in the low science score. Based on this there is a conclusion that
“ the good got better and the bad got worse”. The result similar to that of
Buchinsky (1998, 2001), Chaudhuir and Samarov (1997) and Bailar (1991) while
analyzing economics phenomena with conclusion “the rich got richer and the poor
got poorer.”

Then turn to the OLS results. The OLS estimates suggest that the effect is
linear with the intercept 34.628 and slope 2.345. The linear effect is an essentially
negligible quadratic effects for some quantiles such as 0.25 and 0.50 quantiles.
However, the quantile regression estimates give a very different picture. Generally
speaking, ordinary least squares regression underestimates the magnitude of these
effects at higher quantiles such as 0.75 and 0.95 quantiles, and overestimates the
magnitude of these effects at lower quantiles such as 0.05 and 0.25.
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4.3 With a first order auto-regressive point of view: today and yester-
day

It is important and interesting for us to have a true understanding of the
students’ past. What is the tendency for the student’s science achievement over
the six grades? Why is the history of the past score of student important?

Figure 2 is a scatter plot of 6 years of science achievement data; it is plot-
ted against last year’s science achievement with a simple autoregressive point of
view. The phenomenon here is that there is a strong tendency for data to cluster
almost along the 45 degree line, which can be interpreted that this year’s science
achievement is more or less close to that of the last year at higher quantiles.
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Figure 2: A scatter plot illustrates the data of 6 years of sciences achievements
of seventh- and twelfth-grade American students from 1987 to 1992. The data
is almost scattered around the 45 degree lines implying that this year’s science
achievement is roughly close to that of the last year at higher quantiles.

Figure 3 presents several estimated quantile regression curves with p = 0.025,
0.075, 0.125, 0.175, 0.225, 0.275, 0.325, 0.375, 0.425, 0.475, 0.525, 0.575, 0.625,
0.675, 0.725, 0.775, 0.825, 0.875, 0.925 and 0.975.
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Figure 3: The ‘xx’ indicates last year’s science achievement and ‘pre’ indi-
cates the predicted quantile values. The solid lines on the scatter plot are
estimated conditional quantile functions with quantiles p = 0.025, 0.075, 0.125,
0.175, 0.225, 0.275, 0.325, 0.375, 0.425, 0.475, 0.525, 0.575, 0.625, 0.675, 0.725,
0.775, 0.825, 0.875, 0.925 and 0.975. The dotted line represents a classical least
squared regression.

From the plot, we may conclude that under the low-science-score conditions,
for example, failed to pass examinations (less than 60), these curves disperse
sharply. It is also interesting to mention that if a student failed to pass the
examination last year, he could hardly pass the examination this year.

However under the high-science-score conditions (greater than 60), all these
quantile curves bunch tightly around the 45 degree line with a number of excep-
tions.

In short, as for the science achievement, if a student performs well in the last
year, his score appears to have two tendencies: one is roughly around that of last
year with very large quantile (> 95%), and the other drops out with a very small
quantile (< 5%).
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In addition, the tendency of the classical least squared regression curve pre-
sented by the dotted line reveals that there are several unusual points with high
science achievements of last year and low science achievements this year. These
points have strong effects exerted on the least squared fit. One consequence of
this non-robustness is that the classical least squares regression provides a rather
poor estimate of the conditional mean for the worst students in the sample.

5. Mathematics Achievement

5.1 Descriptive statistics

Descriptive statistics of mathematics achievements are given in Table 2. Note
that the magnitude of average mathematics scale score results increases in a
straight line from grades 7 to 11, but decreases in Grade 12. Obviously, the
senior high school students do better than the junior high school students in
mathematics score. And all the average mathematics scores for 3 years passed
60 score in the senior high school but failed to pass 60 score in the junior high
school. Table 2 clearly reveals the tendency of the average scores from Grade 7
to Grade 12. The maximum and minimum values of all the six years’ average
mathematics achievements are 64.76 of grade 11 and 50.40 of grade 7.

Table 2: Descriptive statistics of mathematics achievement

Grade Number Minimum Maximum Mean Std.

Grade 7 3065 27.56 86.92 50.40 10.22
Grade 8 2749 23.49 92.58 52.92 11.75
Grade 9 2435 22.87 98.59 57.36 14.01
Grade 10 2264 23.18 101.35 61.59 16.01
Grade 11 1832 25.48 104.70 64.76 17.26
Grade 12 1467 23.05 106.90 64.25 19.07

5.2 Double-kernel regression quantile curves

Figure 4 presents five quantile curves with p = 0.05, 0.25, 0.5, 0.75 and 0.95.
The only straight line (marked by “*”) represents the ordinary least squares
estimated (OLS) of the mean effects. This plot seems support the saying “the
good got better and the bad got worse”.
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Figure 4: Five quantile curves with p = 0.05, 0.25, 0.5, 0.75, and 0.95 for the
mathematics achievements of American youth of seventh- and twelfth-grade as
a function of their grades.

Specifically, notice that for 0.05-quantile the magnitude of the estimates de-
creases monotonically when moving from grade 7 to grade 12. For the intermedi-
ate parts, such as 0.25 and 0.5 quantiles, the magnitude of the estimates increases
monotonically from grade 7 to grade 11 but decreases monotonically in the last
year grade 12. Clearly, for higher quantiles, such as 0.75 and 0.95, the magnitude
of the estimates increases monotonically when moving from grade 7 to grade 12.

The OLS estimates suggest an essentially negligible quadratic effects for some
quantiles such as 0.25 and 0.50 quantiles. However, the quantile regression esti-
mates give a very different picture. Generally speaking, ordinary least squares
underestimates the magnitude of these effects at higher quantiles such as 0.75 and
0.95 quantiles, and overestimates the magnitude of these effects at lower quantiles
such as 0.05 and 0.25.
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5.3 Analysis of the relationship between today and yesterday

For the mathematics achievements data of 6 years, a scatter plot of this year’s
mathematics achievements against last year’s shows that there is a tendency for
data points to cluster almost along the 45 degree line, which implies that this
year’s mathematics achievement is close to that of last year.

Figure 5 presents several estimated quantile regression curves with p = 0.025,
0.075, 0.125, 0.175, 0.225, 0.275, 0.325, 0.375, 0.425, 0.475, 0.525, 0.575, 0.625,
0.675, 0.725, 0.775, 0.825, 0.875, 0.925 and 0.975. Dotted line is the least squared
fit. The plot reveals that almost all these quantile curves are bunched tightly
around the 45 degree line at higher quantiles with a few exceptions.

The conditional median and mean fits are almost the same in this data. This
may be explained by the symmetry of the conditional density and a lack of ex-
treme points in the data.

The shape of Figure 5 implies that this year’s mathematics achievements are
similar to that of last year. The consistence in learning mathematics may be
explained by the nature of mathematics.

20 40 60 80 100

40
50

60
70

80
90

10
0

xx

pr
e

Figure 5: The ‘xx’ indicates last year’s mathematics achievement and ‘pre’
indicates the predicted quantile values. The solid lines on the scatter plot are
estimated conditional quantile functions with quantiles p = 0.025, 0.075, 0.125,
0.175, 0.225, 0.275, 0.325, 0.375, 0.425, 0.475, 0.525, 0.575, 0.625, 0.675, 0.725,
0.775, 0.825, 0.875, 0.925 and 0.975.
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6. The Relationship between Science Achievement and Mathematics
Achievement

It is well known that mathematics is an instrumental subject for other sub-
jects, especially sciences. Hence it is necessary to study the effect of mathematics
achievement on science achievement. In this section, we present linear quantile
regression estimates of the effect of mathematics inputs on changes in science
achievements.

Table 3 shows the comparison of quantile regression and OLS results condi-
tional on mathematics achievement. The estimated standard errors are reported
in parentheses. We first note that the effects of mathematics achievement on
science achievement are significantly positive values and only the intercept at
quantile 5% is a insignificantly negative value, -1.19, which can be interpreted
as the estimated conditional quantile function of the science achievement of a
student whose mathematics achievement is zero. That is to say, without mathe-
matics background, the effect on learning science is nearly zero.

From the quantile regression results, we notice the following differences from
OLS regression. The effects for the factor Mathematics are all positive significant
across all quantiles of the conditional distribution of science achievement changes.
The estimated effects are 0.74, 0.80, 0.77, 0.72 and 0.61 at 5%, 25%, 50%75% and
95% quantiles respectively. Obviously, the maximum marginal effect of Mathe-
matics on science is at 25% quantile. Notice that the magnitude of the estimates
decreases monotonically from a lower quantile to a higher quantile except for the
5% quantile(i.e., from 25% to 95% quantiles). Ordinary least-squares underesti-
mates the magnitude of these effects at lower quantiles from 5% to median 50%
and overestimates the magnitude of these estimates at higher quantiles from 75%
to 95%.

For comparison, the differentials in science achievements between with-mathematics
(MATHEMATICS=1) and without-mathematics (MATHEMATICS=0) are 0.74,
0.80, 0.77, 0.72 and 0.61 when from the lowest quantile to the highest quantile.

Table 3: Comparison of quantile regression and OLS results conditional on the
controlling model

Quantile regression results O. L. S.

Description 5% 25% 50% 75% 95%

Intercept -1.19 4.54* 12.08* 20.53* 34.97* 14.01*
(0.83) (0.38) (0.33) (0.39) (0.60) (0.30)

Mathematics 0.74* 0.80* 0.77* 0.72* 0.61* 0.73*
(0.02) (0.01) (0.01) (0.01) (0.01) (0.00)

Selected the instrumental subject MATHEMATICS as the predictor variable,
and the responsible variable is SCIENCE.



462 Maozai Tian et al.

Figures 6 and 7 give a concise visual summary of the linear quantile regression
results for the data. Figure 10 describes Intercept of the model and Figure 11
describes slope of Mathematics in the model. The solid line with filled dots
(marked by the capital letter “I” and “E” in respective figures) represents the
5 point estimates of the effects of ‘MATHEMATICS’ for τ ranging from 0.05 to
0.95. In both figures, two dashed lines with filled dots, marked by the capital letter
“U” and “L”respectively, represent the lower and upper confidence bounds. The
area between the lower and upper confidence bound is a 90% pointwise confidence
band. The horizontal dotted line with filled dots marked star “*” presents the
ordinary least squared estimates of the mean effects.

The intercept of the model may be interpreted as the estimated conditional
quantile function of the science distribution for a student whose mathematics
achievement is null. From Figure 6, we can find that the estimated conditional
quantile function is monotonically increasing.
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Figure 6: Intercept of the model. The solid line with filled dots (marked
by the capital letter “I”) represents the 5 point estimates of the effects of
‘MATHEMATICS’ for τ ranging from 0.05 to 0.95. Two dashed lines with filled
dots marked by the capital letter “U” and “L” respectively are the lower and
upper confidence bounds. The horizontal dotted line with filled dots marked
star “*” presents the ordinary least squared estimates of the mean effects.

The differential between the maximum and the minimum values is 34.97-(-
1.19)= 36.16 at 95% and 5% quantiles respectively. The slopes of MATHEMAT-
ICS are in fact marginal effects. Figure 7 reveals the marginal effects decrease
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monotonically from lower quantiles to higher quantiles (except for 5% quantile).
The differential between the maximum and the minimum values is 0.80-0.61=
0.19 at 25% and 95% quantiles respectively.
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Figure 7: Slope of Mathematics in the model. The solid line with filled dots
(marked by the capital letter “E”) represents the 5 point estimates of the effects
of ‘MATHEMATICS’ for τ ranging from 0.05 to 0.95. Two dashed lines with
filled dots, marked by the capital letter “U” and “L” respectively are the lower
and upper confidence bounds. The area between the lower and upper confidence
bound is a 90% pointwise confidence band. The horizontal dotted line with
filled dots marked star “*” presents the ordinary least squared estimates of the
mean effects.
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