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Abstract: The rule of three gives 3/n as the upper 95% bound for the
success rate of the zero-numerator problems. However, this bound is usu-
ally conservative although it is useful in practice. Some Bayesian methods
with beta distributions as priors have been studied. However, choosing the
parameters for the priors is subjective and can severely impact the corre-
sponding posterior distributions. In this paper, some hierarchical models are
proposed, which provide practitioners other options for those zero-numerator
problems.
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1. Introduction

1.1 Introduction

Suppose we want to know the probability of the occurrence of a certain kind
of event when in n independent trials, the event never occurs. This situation is
referred as the zero-numerator problem. A probability model for this issue can be
built by a binomial distribution with sample size n and the probability p, which is
usually very small. Based on this binomial model, the point estimate of p by the
maximum likelihood estimator is p = x/n = 0 since here x = 0. This estimate is
not accurate and may not useful in practice. Although this event is rare, it may
occur on occasion based on our previous experience.

1.2 Frequentist method and the rule of three

Louis (1981) gave a (1 − α) × 100 percent confidence interval for p:

[0, pn], pn = 1 − α1/n = Sb/n, (1.1)

where Sn can be considered as a number of successes in a future experiment of
the same size. By taking limit as n → ∞, then we have
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lim
n→∞Sn = −ln(α). (1.2)

When α = 0.05,−ln(α) ≈ 3. So the rule of three states that the upper 95%
bound for p is about 3/n.

Jovanovic and Levy (1997) obtained the same results from a different way.
Suppose random variable X has a Binomial distribution with parameters n and
p, then

P (X = 0 |n, p) = (1 − p)n (1.3)

A (1 − α) × 100% bound can be obtained by solving (1 − p)n > α. It gives the
upper bound pu = 1 − α1/n. By using a Taylor expansion, we then have

pu = 1 − α1/n
≈ −ln(α)/n (1.4)

Both Louis (1981) and Jovanovic and Levy (1997) gave numerical examples to
show that when n is large enough, the rule of three gives a good approximation of
the upper 95% bound. However, sometimes we are more interested in predicting
the occurrence rate rather than obtaining upper bounds. Obviously, if this is
the case, the upper 95% bound does not help us much. Louis (1981) cited Bickel
and Doksum (1980) and pointed out that this bound corresponds to the Bayesian
95% credibility bound for a uniform prior on p.

1.3 An example and Bayesian models

One of the applications for the zero-numerator problems is for the false-
positive rate for a medical test with no previous record of positive results. An-
other example, given by Hanley and Lippman-Hand (1983) and cited by Winkler
et al. (2002), involved two different contrast agents used by radiologists over a
long time. The standard one has been shown to cause a serious reaction in about
15 of every 10,000 patients exposed to it. The new contrast agent was applied
to 167 patients and none of them reported having the reaction. By the rule of
three, the upper 95% confidence bound for the probability of a serious reaction
with the new contrast agent is about 3/167 = 0.018, while the standard contrast
agent has the probability of 0.0015. What can we say about the probability of a
serious reaction for the new contrast agent?

Bayesian models may shed some light on this problem. For a Bayesian model,
the commonly used prior for Binomial distributions is the class of beta distribu-
tions Beta(a, b). Geisser (1984) has discussed several different prior distributions
that were used in binary trials, for example, the noninformative distributions
Beta(0.5, 0.5) (a Jeffreys prior) and Beta(1, 1) (uniform).
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Jovanovic and Levy (1997) suggested using Beta(1, b), b ≥ 1 as the prior
because when b > 1 the prior favors values of p close to zero. In addition,
values of a other than 1 provide the prior with a local maximum away from
zero that cannot be justified without additional information. It is well known
that Beta(a, b) is a conjugate prior for the binomial distribution bin(n, p) and
the corresponding posterior distribution is Beta(y + a, n + b), where y is the
observed value in n trials. In zero-numerator problems y = 0 and therefore the
posterior is Beta(n, n + b). Winkler et al. (2002) discussed this problem for
both noninformative and informative beta distributions. They stated that a = 1
in Jovanovic’s prior Beta(a, b) was unduly restrictive and suggested trying any
Beta(a, b) with a > 0 and b > 0 when assessing priors.

2. Hierarchical Models

2.1 Hierarchical models

In Bayesian models for the zero-numerator problems, the prior has a huge
impact on the posterior distributions due to the limited information available in
the data (i.e., no event has been observed). Following Jovanovic and Levy (1997),
we use the prior Beta(1, b) where b is a random variable taking values greater
than or equal to 1, which has its own distribution, the hyperprior. In the previous
Bayesian models, b is a constant number that may vary according to the person
assigning the values. Therefore, it is reasonable for us to treat b as a random
variable with a given distribution. In the zero-numerator problem, we know that
the probability of p is small. To capture this information, as Jovanovic and Levy
(1997) have stated, b is usually greater than 1. So the random variable b may
take values on (1,∞). Based on this, a reasonable hyperprior can be assigned.
For example, we can assume 1/(b − 1) is distributed as a Beta(c, d) where c and
d are constants. Therefore we have the following hierarchical model:

y |n, p ∼ Bin(n, p)
p | b ∼ Beta(1, b)

1/(b − 1) ∼ Beta(c, d). (2.1)

In this model, the hyperparameter c should not be too small; otherwise the mass
of the distribution will concentrate around zero and it will be very likely to obtain
a large value of b. In other words, the posterior distribution will concentrate
around zero and underestimate the probability of p.

Another reasonable choice is an exponential hyperprior:
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y |n, p ∼ Bin(n, p)
p | b ∼ Beta(1, b)

(b − 1) ∼ exp(λ), (2.2)

where exp(x |λ) = λe−xλ.
We can also choose gamma hyperprior on b − 1

y |n, p ∼ Bin(n, p)
p | b ∼ Beta(1, b)

(b − 1) ∼ Gamma(α), (2.3)

where Gamma(x |α) = xα−1e−x/Γ(α).
In the next subsection, we will give the numerical results obtained from dif-

ferent methods, including Bayesian models with noninformative and formative
prior as well as hierarchical models (2.1)-(2.3).

2.2 Numerical results of the example

The popular priors of noninformative Beta distributions for this problem are
Beta(0.5, 0.5) (a Jefferys prior) and Beta(1, 1) (uniform distribution). If we ap-
ply these two distributions to the previous example, the corresponding posterior
distributions are Beta(0.5, 167.5) and Beta(1, 168), respectively. The means are
0.5/(0.5 + 167.5) = 0.00298 and 1/169 = 0.00592. Although these two numbers
are very different, both of them are greater than 0.0015.

In this example, the risk proportion for the standard agent is known and this
may provide us some information about the proportion of the new agent. Winkler
et al. (2002) chose a prior Beta(a, b) such that the prior mean equals to 0.0015
and has 95% chance that p is less than 0.75%, five times the risk of the old agent.
They obtained α = 0.042 and b = 27.96. The posterior is Beta(0.042, 194.96)
and its mean is 0.00022,which is much less than 0.0015. If we set a = 1 and
want the mean of Beta(1, b) = 0.0015, then b = 665.71. The resulting posterior
is Beta(1, 832.71) and its mean is 0.0012.

If we use posterior mean to estimate the new risk, the method based on
Jovanovic’s suggestion seems give a value closer to the previous information than
the one obtained by Winkler. Furthermore, if we believe that under the true risk
p the probability that no serious reaction occurs in 167 observations is between
5% and 95%, then p should be between 0.00031 and 0.01778. Therefore the risk
value given by Winkler seems too small. In addition Winkler’s posterior median is
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2×10−10, which is too small. That means the posterior distribution concentrates
too much mass at zero. These four posteriors are plotted in Figure 1 and some
statistics (5% quantile, median, mean and 95% quantile) for these posteriors are
shown in Table 1. From Figure 1 and Table 1, we can see that with different
priors, the densities and the statistics may be very different. Choosing a “good”
prior is a very important and difficult task.

Table 1: Summary statistics for the posteriors of Bayesian model with different
a and b’s

a = b = 0.5 a = b = 1 a = 0.042, b = 27.96 a = 1, b = 665.71

5% quantile 1.12 × 10−5 0.00029 3.14 × 10−34 6.16 × 10−5

Median 0.00140 0.00387 2.03 × 10−10 0.00083
Mean 0.00298 0.00559 0.00022 0.00120
95% quantile 0.0144 0.0167 0.00106 0.00359
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Figure 1: Posteriors for Bayesian models with different parameters

Hierarchical models (2.1), (2.2) and (2.3), each with different hyperparameters
in the hyperprior distributions, are also developed for this example. Markov chain
Monte Carlo (MCMC) method is used to approximate the corresponding posterior
distributions. The calculation and plots are done by using software Winbugs1.

1see http://www.mrc-bsu.cam.ac.uk/bugs/
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Table 2: Summary statistics for the posteriors of models (2.1), (2.2) and (2.3)

Medel (2.1)
c = 0.5, d = 0.5 c = 1, d = 1 c = 1, d = 10 c = 1, d = 100

5% 8.1 × 10−6 1.5 × 10−4 1.1 × 10−4 4.9 × 10−5

Median 0.0013 0.0030 0.0024 0.0013
Mean 0.0028 0.0047 0.0039 0.0024
95% 0.0110 0.0151 0.0128 0.0085

Model (2.2)
c = 0.01 c = 1 c = 10 c = 1000

5% 1.6 × 10−4 3.0 × 10−4 3.2 × 10−4 3.0 × 10−4

Median 0.0022 0.0041 0.0041 0.0041
Mean 0.0034 0.0059 0.0058 0.0059
95% 0.0105 0.0174 0.0175 0.0138

Model (2.3)
c = 0.1 c = 1 c = 100 c = 1000

5% 3.2 × 10−4 3.0 × 10−4 2.0 × 10−4 4.4 × 10−5

Median 0.0041 0.0041 0.0026 6.0 × 10−4

Mean 0.0058 0.0059 0.0037 8.6 × 10−4

95% 0.0175 0.0138 0.0110 0.0026

Some statistics (5% quantile, median, mean and 95% quantile) are summarized in
Table 2. Unlike the Bayesian models, the summary statistics from our Bayesian
hierarchical models have very close values even for different hyperpriors with
different hyperparameters. Figure 2 shows the densities of the posteriors from
model (2.1) with different parameters. It is clear that those posteriors have very
similar densities. For models (2.2) and (2.3), we obtained similar plots (not
shown) as Figure 2.

3. Conclusion

For the zero-numerator problem, the rule of three gives conservative results
of the upper 95% bounds. Bayesian models typically use beta priors, and the
posterior distribution depends heavily on the values of the parameters used in
the priors. Choosing the parameters is a hard task that needs more attention.
The numerical results of an example shows that the traditional way of assessing
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c = d = 0.5 c = d = 1
p sample: 9500
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Figure 2: Posteriors for model (2.1)

a prior is not suitable for zero-numerator problems because of the sensitivity to
choice of priors. To solve this problem, we proposed several hierarchical models.
The hierarchical models give very consistent results, regardless of the choice of
prior parameters.
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