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Bayesian Wavelet Regression for Spatial Estimation
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Abstract: We consider the problem of estimating the properties of an oil
reservoir, like porosity and sand thickness, in an exploration scenario where
only a few wells have been drilled. We use gamma ray records measured
directly from the wells as well as seismic traces recorded around the wells.
To model the association between the soil properties and the signals, we fit
a linear regression model. Additionally we account for the spatial correla-
tion structure of the observations using a correlation function that depends
on the distance between two points. We transform the predictor variable
using discrete wavelets and then perform a Bayesian variable selection us-
ing a Metropolis search. We obtain predictions of the properties over the
whole reservoir providing a probabilistic quantification of their uncertainties,
thanks to the Bayesian nature of our method. The cross-validated results
show that a very high accuracy can be achieved even with a very small
number of wavelet coefficients.

Key words: Bayesian variable selection, reservoir exploration, wavelet re-
gression.

1. Introduction

Predicting the properties of a reservoir using the information provided by data
collected from wells is a fundamental issue in petroleum management and explo-
ration. Data collected from wells usually consists of core analyses, performed, on
actual samples of the soil, and recordings of different electromagnetic, physical,
chemical or radioactive properties of the soil obtained by inserting various tools
into the well. These are usually refer to in the industry as well logs or well pro-
files, (see Hearst and Nelson, 2000; Tiab and Donaldson, 2004). Core and well log
data are expensive and are available only at the specific locations were wells have
been drilled. To obtain a global description of the reservoir, petroleum engineers
perform an array of geostatistical techniques for interpolation (see Sheldon, 1995;
Doyen, 1988). In an exploration scenario, log and core data are usually scarce, as
they are only available at the few locations where wells have been drilled, whether
seismic data are usually available for the whole reservoir. The scarcity of well
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data presents a problem for most geostatistical methods, since they are generally
imprecise when the number of locations is small. Moreover, seismic information
can be difficult to incorporate. An example of the data that we consider in this
paper is presented in Figure 1.
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Figure 1: Left panel shows a typical γ-ray. Right panel corresponds to a typical
seismic trace.

The method we present in this paper consists on regressing the observations
obtained from the wells on the wavelet decomposition of a signal, either well logs
or seismic traces. Wavelet transformations provide a parsimonious representation
of the information in the signal. Their multiresolution properties have been
successfully applied to quantify the decay of energy from large to small scales
in well logs and seismic traces, see Álvarez et al. (2003). The method uses a
Bayesian approach to estimate the property of interest on a location in a reservoir
and quantify the uncertainty associated with the estimation. This includes a
stochastic variable selection model to reduce the number of wavelet coefficient
needed for accurate prediction of the reservoir properties.

We present the model in Section 2. In Section 3 we discuss the methods
used to make inferece on model parameters and produce estimates for the soil
properties at unobserved sites. In Section 4 we present the results followed by
some discussion in Section 5.

2. The Model

The motivating example of this paper consists of data from 14 wells located
in a reservoir in Southwestern Venezuela. For these wells we analyze γ-ray logs
obtained at a depth of 9000 feet.

The γ-ray log is one of the most useful log data available. The γ-ray log can
be summarized as the continuous measurement of the natural, or in some cases
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introduced, radioactivity in a well. It can be recorded in open and cased holes,
separately or in conjunction with virtually any other log, or with perforating guns.
It is a measurement of the natural radiation of various formations penetrated
by a well (or in some cases artificially placed sources of radiation). Dolomites,
limestones, sandstones, and salts typically exhibit a low level of radiation, while
shales, clays, and rocks of igneous origin typically have higher levels of radiation.
It is these differences that make the γ-ray log very useful in determining lithologies
and in the evaluation of the shale volume, porosity and other rock properties in
zones of interest, see for example Robinson (2000) and Hearst and Nelson (2000).

Additionally, data from a grid of seismic traces covering an area of 100 Km2

around the wells is also available. The reservoir is a three dimensional domain.
In our analysis we consider a fixed depth that is of petrophysical interest. It
consist of a window of 150 feet, equivalent to about 32 seconds for the seismic
traces. For such stratum we have available the average values of porosity and
clay volume at the sites of the oil wells. In other words, the response variables in
our problem consist of the set of two reservoir properties observed at 14 different
locations. These locations are irregularly scattered over the whole area of the
reservoir. Figure 2 shows the location of the 14 wells.

The explanatory variables consist of well logs and seismic traces. These are
series of, respectively, 512 and 128 readings. The Data were provided by Intevep,
the research branch of PDVSA, the Venezuelan state-own oil company.
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Figure 2: Location of the 14 well in the reservoir under study. Wells are
numbered so that they can be referenced in the analysis.

In order to relate the reservoir properties to the well logs or the traces, we
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consider the regression model

y = α1 + Xb + ε (2.1)

where y ∈ R
n is the vector of properties at the locations of the wells. In our case

n = 14. α ∈ R is an intercept, 1 is an n-dimensional vector of ones. X ∈ R
n×p

is the matrix of the signals, either well logs or seismic traces and p = 512 or 128.
b ∈ R

p is a vector of coefficients and ε ∈ R
n is the error term. Notice that the

model in (2.1) has a larger number of regression coefficients than data. Thus
direct estimation of the b using traditional regression methods is unfeasible. We
either have to impose some restrictions or consider prior information.

Motivated by the work of Brown, Fearn and Vannucci (2001) we consider a
wavelet transformation of the signals. The idea of such a transformation is that a
reduced number of wavelet coefficients should be able to capture the information
in the signals needed to predict the value of the reservoir property at a given
location. A discrete wavelet transformation is given by an orthogonal matrix (see
for example Vidakovic 1999, chapter 4), say W ∈ R

p×p, such that WW ′ = I,
where I denotes the identity matrix. We then have that

y = α1 + XWW ′b + ε = α1 + Zβ + ε (2.2)

where Z = XW is the matrix of wavelet coefficients corresponding the series in
X and β = W ′b the new regression vector.

Since we expected that locations in the reservoir that are close to each other
will have similar properties, ε should have a non-diagonal correlation structure.
We model such spatial correlation by assuming that the error term ε corresponds
to an isotropic random field with an exponentially decaying correlation function.
Thus

cov(εi, εj) = σ2 exp
(
− 1

λ
||si − sj ||

)
,

where sk denotes the location of the kth site. The proposed correlation can
easily be substituted for any other parametric family of correlations offering wider
flexibility, like the Mat � n class, as described for example in Handcock and Stein
(1993).

We take a Bayesian approach to estimate the parameters in the model and,
following Brown Fearn and Vannucci (2001), we specify a prior for the original
regression coefficients b as a p-variate normal with mean 0 and covariance matrix
H , denoted as Np(0,H), for H corresponding to the covariance matrix of an
autoregressive process of order one. Such a distribution is used to guarantee that
the components of b vary smoothly and that the variances of the transformed
coefficient β show the typical decay of wavelet coefficients. The selection of the
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relevant wavelet coefficients is achieved by considering a prior distribution for the
parameter βi given by

p(βi) ∝ (1 − γi)δ0 + γiN1(0, h̃i) ,

where δ0 is a point mass at 0 and γi is a binary variable that indicates whether
the i-th coefficient is 0 or not. h̃i corresponds to the diagonal of the matrix
H̃ = WHW ′. So, a priori, the i-th coefficient has probability 1−γi of being equal
to zero and probability γi of being distributed as a normal with zero mean and
variance h̃i. To complete our model we consider the following prior distributions:
α ∼ N1(0, hσ2), γi ∼ Ber(ω), i = 1, 2 · · · , p., where Ber(p) denotes a Bernoulli
with parameter p, σ2 follows an inverse gamma with parameters aσ and bσ and
λ follows a gamma with parameters aλ and bλ. aσ and bσ were chosen to obtain
a diffuse prior on σ2. aλ was taken as 0.4 for clay volume and 0.5 for porosity, bλ

was set to 4 in both cases. These values are compatible with the covariograms of
the observations, but reflect a fair level of uncertainty.

3. Estimation and Prediction

To obtain inferences on the parameters in our model we explore their joint
posterior distribution using a Markov chain Monte Carlo method (MCMC) as
proposed, for example, in Gamerman and Lopes (2006). The MCMC that we use
consists of sampling iteratively from the distributions of each of the parameters
or blocks of parameters conditional on all the remaining ones. Thus, samples
of α are obtained from a univariate normal. Samples of β are obtained from
a multivariate normal and samples of σ2 correspond to an inverse gamma. The
spatial range λ is sampled by considering a Metropolis-Hastings step that consists
of accepting or rejecting a proposed value with a probability that depends on the
conditional density of λ evaluated at the current state of the chain. A more
detailed description of the full conditionals is presented in Álvarez (2003).

Generating samples of γ = (γ1, . . . , γp) presents the challenge of dealing with
a highly multivariate distribution, since in our case p is 512 when using the γ-
ray logs as predictor and 128 when using the seismic traces. We proceed by
considering a random initial configuration γ(0). Then, at each iteration, one the
following two ways of choosing a candidate configuration is chosen with (fixed)
probability φ: (a) Generate a new candidate by choosing at random a component.
This component is deleted if it is part of the current configuration and added if it is
not; (b) Select two components i and j such that γi = 0 and γj = 1 and swap their
values. The proposed configuration is rejected or accepted following a Metropolis-
Hastings rule. Experience shows that good predictions can be obtained with
about 20 wavelet coefficients. Thus our prior distribution for γ is such that the
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prior expected number of coefficients, pω, is equal to 20. Thus ω = 0.16 when
the seismic traces are used, and ω = 0.04 when the well logs are used.

The posterior predictive density of a new observation yN , given the observed
data yobs, can be estimated from the m simulated values from the MCMC for
the joint parameter vector, say θ(j), using the approximation

p̂(yN |yobs) =
1
m

m∑
j=1

p(yN |θ(j)).

In our case, in order to predict the value of a property for a specific location
sN , we use the information provided by the wavelet transformation of the signal
zN ∈ R

p corresponding to sN . Thus, using the j-th iteration from the MCMC,

p(yN |θ(j)) = N


α(j) + z′

Nβ(j) +
V (j)

v
(j)
N,2

(y − α(j)1− Zβ(j)),V (j)
r


 , (3.1)

where

V
(j)
N =

(
V (j) v(j)

1,N

v(j)
N,1 v

(j)
N,2

)
∈ R

(n+1)×(n+1)

and

V r = V (j) − v(j)
N,1v

(j)
1,N

v
(j)
N,2

∈ R
n×n,

v1,N ∈ R
(n×1), vN,1 ∈ R

(1×n) and [V (j)
N ]k,l = σ2 exp(− 1

λj ||sl − sk||). In words, to
obtain a prediction at a location sN we calculate the wavelet decomposition of
the signal at that location and then, for each set of simulated values from the the
MCMC, we calculate the spatial correlation matrix V

(j)
N and sample the normal

distribution specified in (3.1). The result is a set of samples y
(1)
N , . . . , y

(m)
N from

the posterior predictive distribution of yN .

4. Results

We fitted model (2.2) separately for each property using first the γ-ray logs
and then the seismic traces. We considered a wavelet transformation based on
the Haar basis. We present results that were obtained from 5,000 iterations of
a MCMC after a burn in period of 500 iterations. To explore the predictive
capability of the model we adopted a “leave one out” approach, consisting on
obtaining the posterior predictive distribution for each of the 14 locations using
the remaining 13.
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Figure 3: Linear interpolations of the predicted properties obtained using a
“leave one out” estimation. The predictions at each well are obtained using the
γ-ray logs. Top panel corresponds to clay volume and bottom panel corresponds
to porosity.

Figure 3 shows the predicted values of porosity and clay volume interpolated
over the convex hull of the locations of the wells. The predictions for each well
are given by the medians of the simulated values obtained from the 4,500 samples
from the MCMC. In Figure 4 we compare the predictive distribution of each of
the 14 wells, based on the remaining 13 wells to the actual observed values of clay
volume. Similar results are obtained for porosity. Notice that the observations
are very central to the predictive densities. The former shows that the method
has a very high level of predictive accuracy. Also, given the Bayesian nature of the
method, we are not only providing an estimate of the properties at each location,
but a precise assessment of the uncertainties involved in such estimation, given
by the predictive distribution.

The number of non-zero coefficients can vary from one iteration to the other
of the MCMC. Nevertheless we observed that no more than 10 coefficients where
different from zero at any given iteration. This implies that less than 2% of the
wavelet coefficient contain enough information to accurately predict the values of
porosity and clay volume.

Clearly, the predictive ability of the model depends on the number of wells
that are used. To assess the robustness of the method with respect to the number
of locations used for prediction we chose a well located at the center of the field
and predicted its porosity using the remaining 13 locations. We then deleted one
location at random at a time and obtained the prediction with the remaining
locations. The results using γ-ray logs as predictors are shown in Figure 5 for
porosity. A similar behavior is observed for clay volume. As expected, we ob-
serve that the width of the predictive intervals increases as the number of wells
decreases. Nevertheless observations and point-wise predictions are fairly close
even for as little as six location for the clay volume and four for the porosity.

We repeated the whole analysis using the seismic traces as a predictor of both,
clay volume and porosity. Figure 6 shows the interquartile ranges for the leave
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Figure 4: Predictive densities for porosity, obtained using γ-ray logs, at each
of the 14 wells using the remaining 13. Actual observations are marked as a
dot.

one out predictions. The accuracy of the predictions is lower than the one ob-
tained when the γ-ray logs are used, but the performance of the model is remark-
ably good in this case as well.

5. Discussion

We have proposed a wavelet regression with spatially correlated errors for
the prediction of soil properties using petrophysical or seismic signals from an
oil reservoir. We convert an over-parameterized model into a parsimonious one
by imposing appropriate priors on the parameters and using a stochastic vari-
able selection approach. The results are assessed using the posterior predictive
distribution of the property of interest at a location that has been left out of the
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Figure 5: Predictive 95% probability intervals obtained for a centric well, us-
ing γ-ray logs, as a function of the number of predictive wells. Left panel
corresponds to clay volume and right panel corresponds to porosity.
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Figure 6: Interquartile intervals of each of the 14 wells using the remaining 13
wells. Predictions are obtained using seismic traces. Left panel corresponds to
clay volume and bottom panel corresponds to porosity.

analysis and the procedure is repeated for each location at a time. For both
soil properties considered, we obtain predictions that are compatible with the
observations. Moreover, by providing a predictive distribution, the estimation
uncertainties are fully accounted for. These results are achieved with a very small
number of wavelet coefficients. This is an important byproduct of the model that
can be used for data compression.
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